Publications by authors named "Anna Willms"

Background: We investigated the effectiveness of a novel, hunger-based outpatient tube weaning program for children with feeding-tube dependency.

Methods: This interdisciplinary program induced hunger via rapid reduction in tube-fed calories, followed by 2 weeks of daily outpatient mealtime support and regular follow-up. Forty-one children (6.

View Article and Find Full Text PDF

TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation.

View Article and Find Full Text PDF

Purpose: HMGA2 has frequently been found in benign as well as malignant tumors and a significant association between HMGA2 overexpression and poor survival in different malignancies was described. In pancreatic ductal adenocarcinoma (PDAC), nuclear HMGA2 expression is associated with tumor dedifferentiation and presence of lymph node metastasis. Nevertheless, the impact of HMGA2 occurrence in other cell compartments is unknown.

View Article and Find Full Text PDF

Binding of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to the plasma membrane TRAIL-R1/-R2 selectively kills tumor cells. This discovery led to evaluation of TRAIL-R1/-R2 as targets for anti-cancer therapy, yet the corresponding clinical trials were disappointing. Meanwhile, it emerged that many cancer cells are TRAIL-resistant and that TRAIL-R1/-R2-triggering may lead to tumor-promoting effects.

View Article and Find Full Text PDF

Due to their ability to preferentially induce cell death in tumor cells, while sparing healthy cells, TNF-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL-R1 or anti-TRAIL-R2-specific antibodies are under clinical investigations for cancer-treatment. However, TRAIL-Rs may also induce signaling pathways, which result in malignant progression. TRAIL receptors are transcriptionally upregulated via wild-type p53 following radio- or chemotherapy.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has raised attention as a novel anticancer therapeutic as it induces apoptosis preferentially in tumor cells. However, first-generation TRAIL-receptor agonists (TRAs), comprising recombinant TRAIL and agonistic receptor-specific antibodies, have not demonstrated anticancer activity in clinical studies. In fact, cancer cells are often resistant to conventional TRAs.

View Article and Find Full Text PDF

Aims: Mitochondria play a central role in the maturation of proteins with iron-sulfur (Fe/S) clusters. During their biogenesis, the apoforms of Fe/S proteins expose unprotected Fe/S cluster-coordinating cysteine side chains, rendering them vulnerable to oxidative modifications that interfere with subsequent Fe/S cluster insertion. Whether and how cells protect these delicate cysteine residues are unknown.

View Article and Find Full Text PDF