Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and behavioral and psychological symptoms of dementia (BPSD). Given that cholinergic neurons are predominantly affected in AD, current treatments primarily aim to enhance cholinergic neurotransmission. However, imbalances in other neurotransmitters, such as γ-aminobutyric acid (GABA), also contribute to AD symptomatology.
View Article and Find Full Text PDFHerein, we describe the design, synthesis, and biological evaluation of 15 + hybrids. These ligands are polyfunctionalized indole derivatives developed by juxtaposing selected pharmacophoric moieties of and to act as multifunctional ligands. Compounds and were identified as potent HDAC6 inhibitors (IC = 0.
View Article and Find Full Text PDFAt present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named has emerged as a promising MTDL.
View Article and Find Full Text PDFIn the pathogenesis of Alzheimer's disease, the overexpression of glycogen synthase kinase-3β (GSK-3β) stands out due to its multifaced nature, as it contributes to the promotion of amyloid β and tau protein accumulation, as well as neuroinflammatory processes. Therefore, in the present study, we have designed, synthesized, and evaluated a new series of GSK-3β inhibitors based on the -(pyridin-2-yl)cyclopropanecarboxamide scaffold. We identified compound , demonstrating an IC of 70 nM against GSK-3β.
View Article and Find Full Text PDFGSK-3β, IKK-β, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid β (Aβ) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3β plays the most crucial role. In this study, we present compound , a novel, remarkably potent, competitive GSK-3β inhibitor (IC = 8 nM, K = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC = 2.
View Article and Find Full Text PDFThis study examines the properties of a novel series of 4-oxypiperidines designed and synthesized as histamine HR antagonists/inverse agonists based on the structural modification of two lead compounds, viz., and . The products are intended to maintain a high affinity for HR while simultaneously inhibiting AChE or/and BuChE enzymes.
View Article and Find Full Text PDFOur research aimed to evaluate how the rigidification of the characteristic 3-aminopropyloxy linker by incorporating it into 1,5-benzoxazepines affects the potency of histamine H receptor (HR) antagonists/inverse agonists. This research constitutes a starting point for the full characterization of the pharmacological properties of this group of compounds. Several 1,5-benzoxazepine derivatives were synthesized and pharmacologically tested as potential HR antagonist/inverse agonists.
View Article and Find Full Text PDFAs Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR.
View Article and Find Full Text PDFMastocytosis is a heterogeneous group of rare hematological disorders that can occur in infancy. We report a 16-year-old girl who presented with an aggressive form of systemic congenital mastocytosis, associated with a significant global developmental delay, deafness, and multiple anomalies. At 4 years of age, she developed a germinoma presenting as an invasive spinal mass.
View Article and Find Full Text PDFThis study examines the properties of novel guanidines, designed and synthesized as histamine HR antagonists/inverse agonists with additional pharmacological targets. We evaluated their potential against two targets viz., inhibition of MDA-MB-231, and MCF-7 breast cancer cells viability and inhibition of AChE/BuChE.
View Article and Find Full Text PDFButyrylcholinesterase (BuChE) and amyloid β (Aβ) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aβ inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a neurodegenerative disorder, for which there is no effective cure. Current drugs only slow down the course of the disease, and, therefore, there is an urgent need to find effective therapies that not only treat, but also prevent it. Acetylcholinesterase inhibitors (AChEIs), among others, have been used for years to treat AD.
View Article and Find Full Text PDFThe symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development.
View Article and Find Full Text PDFThe multitarget-directed ligands demonstrating affinity to histamine H receptor and additional cholinesterase inhibitory potency represent a promising strategy for research into the effective treatment of Alzheimer's disease. In this study, a novel series of benzophenone derivatives was designed and synthesized. Among these derivatives, we identified compound with a high affinity for HR ( = 8 nM) and significant inhibitory activity toward BuChE (IC = 172 nM and 1.
View Article and Find Full Text PDFNeurodegeneration leading to Alzheimer's disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman's assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation.
View Article and Find Full Text PDFThe ever-increasing number of bacteria resistant to the currently available antibacterial agents is a great medical problem today, and new antibiotics with novel mechanisms of action are urgently needed. Among the validated antibacterial drug targets against which new classes of antibiotics might be directed is bacterial type I signal peptidase (SPase I), an essential part of the Tat and Sec secretory systems. SPase I is responsible for the hydrolysis of the N-terminal signal peptides from proteins secreted across the cytoplasmic membrane and plays a key role in bacterial viability and virulence.
View Article and Find Full Text PDFThe lack of an effective treatment makes Alzheimer's disease a serious healthcare problem and a challenge for medicinal chemists. Herein we report interdisciplinary research on novel multifunctional ligands targeting proteins and processes involved in the development of the disease: BuChE, 5-HT receptors and β-amyloid aggregation. Structure-activity relationship analyses supported by crystallography and docking studies led to the identification of a fused-type multifunctional ligand 50, with remarkable and balanced potencies against BuChE (IC = 90 nM) and 5-HTR (K = 4.
View Article and Find Full Text PDFMultifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile.
View Article and Find Full Text PDFIn Alzheimer's disease, neurons slowly degenerate due to the accumulation of misfolded amyloid β and tau proteins. In our research, we performed extended studies directed at amyloid β and tau aggregation inhibition using ( model of protein aggregation), , and kinetic studies. We tested our library of 1-benzylamino-2-hydroxyalkyl multifunctional anti-Alzheimer's agents and identified very potent dual aggregation inhibitors.
View Article and Find Full Text PDFLooking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: β-secretase enzyme (BACE1) and amyloid β (Aβ) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs).
View Article and Find Full Text PDFSeminal plasma (SP) deposited in the porcine uterine tract at the time of mating is known to elicit an initial response that is beneficial for pregnancy outcome. However, whether SP has any long-term effect on alterations in endometrial molecular and cellular processes is not known. In this study, using microarray analyses, differential changes in endometrial transcriptome were evaluated after Day 6 of SP-infusion (6DPI) or Day 6 of pregnancy as compared to corresponding day of estrous cycle.
View Article and Find Full Text PDFHerein we report metabolic stability in human liver microsomes (HLMs), interactions with cytochrome P450 isoenzymes (CYP3A4, CYP2D6, and CYP2C9), and cytotoxicity analyses on HEK-293, HepG2, Huh7, and WTIIB cell lines of our most recent multitarget directed ligands PF9601N, ASS234, and contilisant. Based on these results, we conclude that (1) PF9601N and contilisant are metabolically stable in the HLM assay, in contrast to the very unstable ASS234; (2) CYP3A4 activity was decreased by PF9601N at all the tested concentrations and by ASS234 and contilisant only at the highest concentration; CYP2D6 activity was reduced by ASS234 at 1, 10, and 25 μM and by PF9601N at 10 and 25 μM, whereas contilisant increased its activity at the same concentrations; CYP2C9 was inhibited by the three compounds; (3) contilisant did not affect cell viability in the widest range of concentrations: up to 10 μM on HEK-293 cells, up to 30 μM on Huh7 cells, up to 50 μM on HepG2 cells, and up to 30 or 100 μM on WTIIB cells. Based on these results, we selected contilisant as a metabolically stable and nontoxic lead compound for further studies in Alzheimer's disease therapy.
View Article and Find Full Text PDFEffective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended (FRET assay) and ( model of protein aggregation) studies on their β-secretase, tau, and amyloid β aggregation inhibitory activity.
View Article and Find Full Text PDFNovel 1-(1-benzoylpiperidin-4-yl)methanamine derivatives with high affinity and selectivity for serotonin 5-HT receptors were obtained and tested in four functional assays: ERK1/2 phosphorylation, adenylyl cyclase inhibition, calcium mobilization, and β-arrestin recruitment. Compounds and (2-methylaminophenoxyethyl and 2-(1-indol-4-yloxy)ethyl derivatives, respectively) were selected as biased agonists with highly differential "signaling fingerprints" that translated into distinct profiles. , showed biased agonism for ERK1/2 phosphorylation and, , it preferentially exerted an antidepressant-like effect in the Porsolt forced swimming test in rats.
View Article and Find Full Text PDFComplex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aβ) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aβ and tau protein in the in cellulo assay in Escherichia coli.
View Article and Find Full Text PDF