Neurol Neuroimmunol Neuroinflamm
January 2025
Background And Objectives: MicroRNAs (miRNAs) are regulators of gene expression and have been reported to be dysregulated in people with multiple sclerosis (pwMS). Autologous hematopoietic stem cell transplantation (aHSCT) is an immune-ablative treatment intervention for pwMS. Currently, it is unknown if aHSCT affects expression levels of miRNAs in CSF.
View Article and Find Full Text PDFBackground: Mitochondrial DNA (mtDNA) is a pro-inflammatory damage-associated molecular pattern molecule and could be an early indicator for inflammation and disease activity in MS. Autologous hematopoietic stem cell transplantation (aHSCT) is a potent treatment for MS, but its impact on mtDNA levels in cerebrospinal fluid (CSF) remains unexplored.
Objectives: To verify elevated CSF mtDNA concentrations in MS patients and assess the impact of aHSCT on mtDNA concentrations.
Background: The common inflammatory disease multiple sclerosis (MS) is a disease of the central nervous system. For more than 25 years autologous hematopoietic stem cell transplantation (AHSCT) has been used to treat MS. It has been shown to be highly effective in suppressing inflammatory activity in relapsing-remitting MS (RRMS) patients.
View Article and Find Full Text PDFMultiple sclerosis is a highly complex and heterogeneous disease. At the onset it often presents as a clinically isolated syndrome. Thereafter relapses are followed by periods of remissions, but eventually, most patients develop secondary progressive multiple sclerosis.
View Article and Find Full Text PDFMultiple sclerosis has been established as an inflammatory disease of the central nervous system. Many aspects of the pathophysiology are still unknown and it is presently unclear how different treatments affect the immunopathology of multiple sclerosis. In this study, we explored cytokines discriminating between individuals with multiple sclerosis and healthy controls and then how these cytokines were affected by treatment intervention with autologous haematopoietic stem cell transplantation or intrathecal rituximab.
View Article and Find Full Text PDFImportance: B-cell-depleting monoclonal antibodies are widely used for treatment of multiple sclerosis but are associated with an impaired response to vaccines.
Objective: To identify factors associated with a favorable vaccine response to tozinameran.
Design, Setting, And Participants: This prospective cohort study was conducted in a specialized multiple sclerosis clinic at a university hospital from January 21 to December 1, 2021.
Objective: To identify serum proteins associated with MS and affected by interferon beta treatment.
Methods: Plasma samples from 29 untreated relapsing-remitting MS patients and 15 healthy controls were investigated with a multiplexed panel containing 92 proteins related to inflammation. Follow-up samples were available from 13 patients at 1 and 3 months after initiation of treatment with interferon beta-1a.
Little is known about the inflammatory milieu in the blood during autologous hematopoietic stem cell transplantation (AHSCT) and how it is affected by the stem cell mobilization, collection, and reinfusion and conditioning regimen. In this study, we analyzed 92 proteins connected to inflammation at 10 time points during and after AHSCT in 16 patients with multiple sclerosis (MS). Serum from 29 patients with newly diagnosed MS and 15 healthy controls were included for comparative analysis.
View Article and Find Full Text PDFInsulin deficiency in type 1 diabetes (T1D) is generally considered a consequence of immune-mediated specific beta-cell loss. Since healthy pancreatic islets consist of ~65% beta cells, this would lead to reduced islet size, while the number of islets per pancreas volume (islet density) would not be affected. In this study, we compared the islet density, size, and size distribution in biopsies from subjects with recent-onset or long-standing T1D, with that in matched non-diabetic subjects.
View Article and Find Full Text PDFAims/hypothesis: It is thought that T cells play a major role in the immune-mediated destruction of beta cells in type 1 diabetes, causing inflammation of the islets of Langerhans (insulitis). The significance of insulitis at the onset of type 1 diabetes is debated, and the role of the T cells poorly understood.
Methods: In the Diabetes Virus Detection (DiViD) study, pancreatic tissue from six living patients with recent-onset type 1 diabetes was collected.
The cause of type 1 diabetes remains unknown. To dissect the link between hyperexpression of human leukocyte antigen (HLA) class I on the islet cells, we examined its expression in subjects with recent-onset type 1 diabetes. IHC showed seemingly pronounced hyperexpression in subjects with recent-onset type 1 diabetes, as well as in some nondiabetic subjects.
View Article and Find Full Text PDFOver 40 susceptibility loci have been identified for type 1 diabetes (T1D). Little is known about how these variants modify disease risk and progression. Here, we combined in vitro and in vivo experiments with clinical studies to determine how genetic variation of the candidate gene cathepsin H (CTSH) affects disease mechanisms and progression in T1D.
View Article and Find Full Text PDFSwollen islet cells have been repeatedly described at onset of type 1 diabetes, but the underlying mechanism of this observation, termed hydropic degeneration, awaits characterization. In this study, laser capture microdissection was applied to extract the islets from an organ donor that died at onset of type 1 diabetes and from an organ donor without pancreatic disease. Morphologic analysis revealed extensive hydropic degeneration in 73% of the islets from the donor with type 1 diabetes.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) constitute a major effector population in pancreatic islets from patients suffering from type 1 diabetes (T1D) and thus represent attractive targets for intervention. Some studies have suggested that blocking the interaction between the chemokine CXCL10 and its receptor CXCR3 on activated CTLs potently inhibits their recruitment and prevents β-cell death. Since recent studies on human pancreata from T1D patients have indicated that both ligand and receptor are abundantly present, we reevaluated whether their interaction constitutes a pivotal node within the chemokine network associated with T1D.
View Article and Find Full Text PDFType 1 diabetes (T1D) is a disease characterized by inflammation of pancreatic islets associated with autoimmunity against insulin-producing beta cells, leading to their progressive destruction. The condition constitutes a significant and worldwide problem to human health, particularly because of its rapid, but thus far unexplained, increase in incidence. Environmental factors such as viral infections are thought to account for this trend.
View Article and Find Full Text PDFBackground: Recent reports have established the notion that many patients with longstanding type 1 diabetes (T1D) possess a remnant population of insulin-producing beta cells. It remains questionable, however, whether these surviving cells can physiologically sense and respond to glucose stimuli.
Methods: Frozen pancreatic sections from non-diabetic donors (n=8), type 2 diabetic patients (n=4), islet autoantibody-positive non-diabetic patients (n=3), type 1 diabetic patients (n=10) and one case of gestational diabetes were obtained via the network for Pancreatic Organ Donors.