We present a study on the dynamical variations of geoelectric fields E during the intense geomagnetic storm of April 23-24, 2023. The storm is caused by the interplanetary counterpart of a coronal mass ejection erupted from the Sun in association with an M1.7 X-ray flare.
View Article and Find Full Text PDFWe analyse the fractal nature of geomagnetic field northward and eastward horizontal components with 1 min resolution measured by the four stations Belsk, Hel, Sodankylä and Hornsund during the period of 22 August-1 September, when the 26 August 2018 geomagnetic storm appeared. To reveal and to quantitatively describe the fractal scaling of the considered data, three selected methods, structure function scaling, Higuchi, and detrended fluctuation analysis are applied. The obtained results show temporal variation of the fractal dimension of geomagnetic field components, revealing differences between their irregularity (complexity).
View Article and Find Full Text PDFWe are concerned with the time series resulting from the computed local horizontal geoelectric field, obtained with the aid of a 1-D layered Earth model based on local geomagnetic field measurements, for the full solar magnetic cycle of 1996-2019, covering the two consecutive solar activity cycles 23 and 24. To our best knowledge, for the first time, the roughness of severe geomagnetic storms is considered by using a monofractal time series analysis of the Earth electric field. We show that during severe geomagnetic storms the Katz fractal dimension of the geoelectric field grows rapidly.
View Article and Find Full Text PDF