Oncolytic viruses (OVs) are anti-cancer therapeutics combining the selective killing of cancer cells with the triggering of an anti-tumoral immune response. The latter effect can be improved by arming OVs with immunomodulatory factors. Due to the heterogeneity of cancer and the tumor microenvironment, it is anticipated that strategies based on the co-expression of multiple therapeutic molecules that interfere with different features of the target malignancy will be more effective than mono-therapies.
View Article and Find Full Text PDFBackground: Dengue poses a significant burden worldwide, and a more comprehensive understanding of the heterogeneity in the intensity of dengue transmission within endemic countries is necessary to evaluate the potential impact of public health interventions.
Methods: This scoping literature review aimed to update a previous study of dengue transmission intensity by collating global age-stratified dengue seroprevalence data published in the Medline, Embase and Web of Science databases from 2014 to 2023. These data were then utilised to calibrate catalytic models and estimate the force of infection (FOI), which is the yearly per-capita risk of infection for a typical susceptible individual.
The extent to which dengue virus has been circulating globally and especially in Africa is largely unknown. Testing available blood samples from previous cross-sectional serological surveys offers a convenient strategy to investigate past dengue infections, as such serosurveys provide the ideal data to reconstruct the age-dependent immunity profile of the population and to estimate the average per-capita annual risk of infection: the force of infection (FOI), which is a fundamental measure of transmission intensity. In this study, we present a novel methodological approach to inform the size and age distribution of blood samples to test when samples are acquired from previous surveys.
View Article and Find Full Text PDF