Publications by authors named "Anna V Forzano"

Continuous stationary phase gradients for liquid chromatography (LC) have been recently shown to be a promising method of altering selectivity. In this work, we present the first multicomponent continuous stationary phase gradient for separations involving both reversed-phase (RP) and strong cation exchange (SCX) mechanisms. These columns are fabricated using a two-step methodology based on controlled rate infusion (CRI).

View Article and Find Full Text PDF

This work seeks to explore and understand the effects of column orientation and degree of modification of continuous stationary phase gradient columns under a mobile phase gradient using both simulations and experiments. Peak parameters such as retention times, peak widths and resolution are obtained for five phenolic compounds on a C-silica gradient stationary phase. Simulations show that peak widths for the solutes are dependent upon the fractional composition of C and orientation of the stationary phase gradient when coupled to a mobile phase gradient.

View Article and Find Full Text PDF

The use of stationary phase gradients for liquid chromatography (LC) is a promising new strategy to allow for specific control over the selectivity of a separation by having a gradual change in the ligand density along the length of the column. Unfortunately, there have been very few, if any, methods to prepare continuous stationary phase gradients on traditional packed LC columns. In this work, destructive methodologies are used to create stationary phase gradients on commercial C columns by infusing trifluoroacetic acid (TFA) onto the column through controlled rate of infusion (CRI).

View Article and Find Full Text PDF

Vapor-phase plotting of organosilane-based self-assembled monolayer (SAM) gradients is demonstrated for the first time. Patterned SAMs are formed by delivering gas-phase organotrichlorosilane precursors to a reactive silica surface using a heated glass capillary. The capillary is attached via a short flexible tube to a reservoir containing the precursor dissolved in toluene.

View Article and Find Full Text PDF

Interfacing of microfluidic devices to mass spectrometry has challenges including dilution from sheath liquid junctions, fragile electrodes, and excessive dead volumes which prevent optimum performance and common use. The goal of this work is to develop a stable nanospray chip-MS interface that contains easily integrated electrodes and an embedded capillary emitter to mitigate current chip-MS problems. This system uses a hybrid polystyrene-poly(dimethylsiloxane) (PS-PDMS) microfluidic platform with an embedded electrode and integrated capillary emitter used as the nanospray interface.

View Article and Find Full Text PDF