The aim of this study was to identify a new putative biomarker in Salmo trutta exposed to water pollution. Variations in the levels of hepatic 3-hydroxy 3-methylglutaryl Coenzyme A reductase (HMG-CoAR), the rate-limiting enzyme of cholesterol biosynthesis, were compared to heat shock protein 70 and hypoxia inducible factor α, biomarkers of pollution exposure and lowered O₂, respectively. The results confirm that HMG-CoAR levels increase in polluted water irrespective of water temperature or O₂ content, indicating that HMG-CoAR could be used as a specific biomarker for water pollution.
View Article and Find Full Text PDF3-Hydroxy 3-methylglutaryl Coenzyme A reductase (HMG-CoAR) and its end-products are crucial for insulin-induced differentiation of fetal rat myoblasts (L6) both at early and terminal stages of development. Inhibition of HMG-CoAR activity and reduction of the enzyme levels impair the expression of L6 differentiation markers and prevent myoblast fusion into multinucleated syncytia. The mechanism underlying the modulation of this crucial enzyme so that muscular differentiation can occur is poorly understood.
View Article and Find Full Text PDFAging is characterized by several metabolic changes responsible for the decline of certain functions and the appearance of age-related diseases, including hypercholesterolemia, which is the main risk factor for atherosclerosis and cardiovascular disease. Similar changes in a number of morphological and biochemical parameters were observed in rats. Caloric restriction (CR) was shown to increase longevity and prevent age-related diseases in various organisms, and to counteract the age-associated increase in plasma cholesterol.
View Article and Find Full Text PDF3-Hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoAR) is the key and rate-limiting enzyme of cholesterol biosynthetic pathway. Although HMG-CoAR activity has already been related to the differentiation of some cellular lines there are no studies that analyze the role of HMG-CoAR, and the pathway it is involved with in a fully characterized muscle differentiation model. Thus, the aim of this work is to evaluate such role and delineate the pathway involved in foetal rat myoblasts (L6) induced to differentiate by insulin -- a standard and feasible model of the myogenic process.
View Article and Find Full Text PDFIntracellular concentration of cholesterol is regulated by the balance between endogenous synthesis and exogenous uptake; endogenous synthesis is subject to feedback control of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity, while the exogenous supply is mainly controlled by the modulation of the low-density lipoprotein receptor. During ageing, hepatic lipid modifications occur and caloric restriction are able to prevent these changes. So, the aim of this work was to evaluate the mechanisms underlying the effect exerted both by caloric restrictions and by a diet enriched with Omega-3 fatty acids, on the cholesterol plasma levels during ageing, by studying the regulation of the protein involved in cholesterol homeostasis maintenance.
View Article and Find Full Text PDFPhysiological sex differences may influence metabolic status and then alter the onset of some diseases. According to recent studies, it is now well established that females are more protected from hypercholesterolemia-related diseases, such as cardiovascular diseases until menopause. Female protection from hypercholesterolemia is mediated by the hypolipidemic properties of estrogens, even if mechanisms underlying this protection remain still debated.
View Article and Find Full Text PDFThe ability to maintain O(2) homeostasis is essential to the survival of all invertebrate and vertebrate species. The transcriptional factor, hypoxia inducible factor 1 (HIF-1), is the principal regulator of oxygen homeostasis. Under hypoxic condition HIF-1 induces the transcription of several hypoxia-responsive genes by binding to hypoxia-response elements (HRE) in their promoters.
View Article and Find Full Text PDFBackground: It seems to be clear that hepatic age-related HMG-CoA reductase total activation is connected to a rise of reactive oxygen species (ROS). However, the mechanism by which ROS achieve this effect is unknown. Thus, in this work, we have performed a study of HMG-CoAR by analyzing the enzymes involved in its short-term regulation, namely, AMP-activated kinase (AMPK) and protein phosphatase 2A (PP2A).
View Article and Find Full Text PDFAgeing has been defined as a progressive decrease in physiological capacity and a reduced ability to respond to environmental stresses. It has been observed that diet-restricted animals show a minor morbidity in age-related disease. Among these age-related diseases, hypercholesterolemia is the most recurring one and it is often associated with cardiac failure.
View Article and Find Full Text PDFDuring the ageing process in rats hypercholesterolemia occurs in concert with full activation, lowered degradation rate and an unchanged level of the rate limiting cholesterol biosynthesis enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoAR). The molecular bases of the HMG-CoAR unchanged level and lowered degradation rate in aged rats is not clear. In fact no data are available during ageing, on transcription and degradation of HMG-CoAR, so well defined in adult animal.
View Article and Find Full Text PDFObjective: The main molecules of cholesterol homeostasis are 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoAR), the key enzyme of the biosynthetic pathway, and the low-density lipoprotein receptor (LDL-R), which is responsible for the uptake of plasma lipoproteins. The increase in the endogenous cholesterol biosynthesis results in stimulation of DNA synthesis, while the inhibition of cholesterogenesis suppresses cell growth. Estrogens have been reported to regulate hepatic LDL-R expression and modulate cell proliferation in different tissues.
View Article and Find Full Text PDFBackground/aims: In thioacetamide-induced liver injury a modification of isoprenoid content and an increase of reactive oxygen species has been described. We have examined how reactive oxygen species influence the 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate limiting enzyme of the isoprenoid biosynthetic pathway, to verify if changes of that enzyme activity are involved in the changed lipid composition of the liver.
Methods: In chronic and acute thioacetamide-treated rat liver we measured the reactive oxygen species content, the activation state and K(M), the level and degradation rate of the hepatic reductase, its short term regulatory enzymes and the liver lipid profile.
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoAR) is the rate-limiting enzyme in cholesterol synthesis and is highly regulated by a variety of factors. We have recently reported increased reductase activity during ageing, attributed to a higher activation state and impaired degradation of the hepatic enzyme. One of the widely recognized causes of age-related metabolic modifications is the large increase of reactive oxygen species (ROS).
View Article and Find Full Text PDFA fraction of the nuclear estrogen receptor alpha (ERalpha) is localized to the plasma membrane region of 17beta-estradiol (E2) target cells. We previously reported that ERalpha is a palmitoylated protein. To gain insight into the molecular mechanism of ERalpha residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERalpha membrane localization.
View Article and Find Full Text PDFAs the main risk factor for cardiovascular disease, hypercholesterolemia is one of the most studied age-related metabolic alterations. In the liver, cholesterol homeostasis is strictly regulated through the modulation of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), the key enzyme of cholesterol biosynthesis. With ageing, hepatic HMG-CoA reductase becomes completely activated and cholesterol content increases in the blood.
View Article and Find Full Text PDFThe capability of 17beta-estradiol (E2) to induce the non-genomic activities of its receptors (ER alpha and ER beta) and to evoke different signaling pathways committed to the regulation of cell proliferation has been analyzed in different cell cancer lines containing transfected (HeLa) or endogenous (HepG2, DLD1) ER alpha or ER beta. In these cell lines, E2 induced different effects on cell growth/apoptosis in dependence of ER isoforms present. The E2-ER alpha complex rapidly activated multiple signal transduction pathways (i.
View Article and Find Full Text PDFLow physiological concentrations of 17beta-estradiol increased the intracellular pH of rat aortic smooth muscle cells by a rapid nongenomic mechanism. This effect was due to stimulation of the Na+/H+ exchanger activity, measured using the intracellular pH-sensitive fluorescent probe 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. The 17beta-estradiol gave rise to a bell-shaped dose response, with a maximum at 10-12 m and no significant effect at 10-9 m.
View Article and Find Full Text PDFWe reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1-S transition by the parallel stimulation of both PKC-alpha and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells.
View Article and Find Full Text PDFEstrogens induce cell proliferation in target tissues by stimulating progression through the G1 phase of the cell cycle. Activation of cyclin D(1) gene expression is a critical feature of this hormonal action. The existence of rapid/nongenomic estradiol-regulated protein kinase C (PKC-alpha) and extracellular signal-regulated kinase (ERK) signal transduction pathways, their cross talk, and role played in DNA synthesis and cyclin D(1) gene transcription have been studied herein in human hepatoma HepG2 cells.
View Article and Find Full Text PDFAgeing has been defined as a gradually decreased ability to maintain homeostatic potential and increased risk to die, associated with a tissue accumulation of altered proteins and lipids. Among other, increased concentration of an isoprenoid compound, dolichol (Dol), in mammalian tissues during ageing has been reported and it has been considered as a new biomarker of ageing. However, the mechanism and the role of this accumulation is still unknown.
View Article and Find Full Text PDFThe expression of the low-density lipoprotein receptor (LDL-r) gene is stimulated by estrogen in vivo, although its promoter does not contain a classical estrogen-responsive element, suggesting an alternative mechanism of estrogen-regulated expression of this gene. The aim of this work was to assess whether estrogen-stimulated transcription of the LDL-r gene depends on tyrosine kinase (TK) and protein kinase C (PKC) activation, both signaling pathways being activated by estrogen in vivo and in hepatoma cells. Therefore, in HepG2 cells cotransfected with estrogen receptor-alpha, estrogen-stimulated transcription of LDL-r-promoter reporter plasmid was analyzed in the absence and presence of TK and PKC inhibitors.
View Article and Find Full Text PDF