Publications by authors named "Anna Trego"

Background: In this study, individual methanogenic (anaerobic), granular biofilms were used as true community replicates to assess whole-microbial-community responses to environmental cues. The aggregates were sourced from a lab-scale, engineered, biological wastewater treatment system, were size-separated, and the largest granules were individually subjected to controlled environmental cues in micro-batch reactors (μBRs).

Results: Individual granules were identical with respect to the structure of the active community based on cDNA analysis.

View Article and Find Full Text PDF

The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions.

View Article and Find Full Text PDF

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm) H-type cells at 5, 10, 15, or 20 g L NaCl concentration.

View Article and Find Full Text PDF

Understanding microbial ecology through amplifying short read regions, typically 16S rRNA for prokaryotic species or 18S rRNA for eukaryotic species, remains a popular, economical choice. These methods provide relative abundances of key microbial taxa, which, depending on the experimental design, can be used to infer mechanistic ecological underpinnings. In this review, we discuss recent advancements in in situ analytical tools that have the power to elucidate ecological phenomena, unveil the metabolic potential of microbial communities, identify complex multidimensional interactions between species, and compare stability and complexity under different conditions.

View Article and Find Full Text PDF

The formation of dense, well-settling methanogenic granules is essential for the operation of high-rate, up-flow anaerobic bioreactors used for wastewater treatment. Granule formation (granulation) mechanisms have been previously proposed, but an ecological understanding of granule formation is still lacking. Additionally, much of the current research on granulation only examines the start-up phase of bioreactor operation, rather than monitoring the fate of established granules and how new granules emerge over time.

View Article and Find Full Text PDF

Municipal wastewater constitutes the largest fraction of wastewater, and yet treatment processes are largely removal-based. High-rate anaerobic digestion (AD) has revolutionised the sustainability of industrial wastewater treatment and could additionally provide an alternative for municipal wastewater. While AD of dilute municipal wastewater is common in tropical regions, the low temperatures of temperate climates has resulted in slow uptake.

View Article and Find Full Text PDF

Advances in null-model approaches have resulted in a deeper understanding of community assembly mechanisms for a variety of complex microbiomes. One under-explored application is assembly of communities from the built-environment, especially during process disturbances. Anaerobic digestion for biological wastewater treatment is often underpinned by retaining millions of active granular biofilm aggregates.

View Article and Find Full Text PDF

Up-flow anaerobic bioreactors are widely applied for high-rate digestion of industrial wastewaters and rely on formation, and retention, of methanogenic granules, comprising of dense, fast-settling, microbial aggregates (approx. 0.5-4.

View Article and Find Full Text PDF

Methanogenic archaea are key players in cycling organic matter in nature but also in engineered waste treatment systems, where they generate methane, which can be used as a renewable energy source. In such systems in the built environment, complex methanogenic consortia are known to aggregate into highly organized, spherical granular biofilms comprising the interdependent microbial trophic groups mediating the successive stages of the anaerobic digestion (AD) process. This study separated methanogenic granules into a range of discrete size fractions, hypothesizing different biofilm growth stages, and separately supplied each with specific substrates to stimulate the activity of key AD trophic groups, including syntrophic acid oxidizers and methanogens.

View Article and Find Full Text PDF

Methanogenic sludge granules are densely packed, small, spherical biofilms found in anaerobic digesters used to treat industrial wastewaters, where they underpin efficient organic waste conversion and biogas production. Each granule theoretically houses representative microorganisms from all of the trophic groups implicated in the successive and interdependent reactions of the anaerobic digestion (AD) process. Information on exactly how methanogenic granules develop, and their eventual fate will be important for precision management of environmental biotechnologies.

View Article and Find Full Text PDF

Background: Nowadays, the vast majority of chemicals are either synthesised from fossil fuels or are extracted from agricultural commodities. However, these production approaches are not environmentally and economically sustainable, as they result in the emission of greenhouse gases and they may also compete with food production. Because of the global agreement to reduce greenhouse gas emissions, there is an urgent interest in developing alternative sustainable sources of chemicals.

View Article and Find Full Text PDF