During the last decades, global cyanobacteria biomass increased due to climate change as well as industrial usage for production of biofuels and food supplements. Thus, there is a need for thorough characterization of their potential health risks, including allergenicity. We therefore aimed to identify and characterize similarities in allergenic potential of cyanobacteria originating from the major ecological environments.
View Article and Find Full Text PDFThe allergenic potential of airborne proteins may be enhanced via post-translational modification induced by air pollutants like ozone (O) and nitrogen dioxide (NO). The molecular mechanisms and kinetics of the chemical modifications that enhance the allergenicity of proteins, however, are still not fully understood. Here, protein tyrosine nitration and oligomerization upon simultaneous exposure of O and NO were studied in coated-wall flow-tube and bulk solution experiments under varying atmospherically relevant conditions (5-200 ppb O, 5-200 ppb NO, 45-96% RH), using bovine serum albumin as a model protein.
View Article and Find Full Text PDF