Biochim Biophys Acta Mol Cell Biol Lipids
July 2020
Eosinophils are important multifaceted effector cells involved in allergic inflammation. Following allergen challenge, eosinophils and other immune cells release secreted phospholipases, generating lysophosphatidylcholines (LPCs). LPCs are potent lipid mediators, and serum levels of LPCs associate with asthma severity, suggesting a regulatory activity of LPCs in asthma development.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is a disease with high 5-year mortality and few therapeutic options. Prostaglandin (PG) E exhibits antifibrotic properties and is reduced in bronchoalveolar lavage from patients with IPF. 15-Prostaglandin dehydrogenase (15-PGDH) is the key enzyme in PGE metabolism under the control of TGF-β and microRNA 218.
View Article and Find Full Text PDFBackground: Recent studies pointed to a crucial role for apolipoproteins in the pathogenesis of inflammatory diseases. However, the role of apolipoprotein-IV (ApoA-IV) in allergic inflammation has not been addressed thoroughly thus far.
Objective: Here, we explored the anti-inflammatory effects and underlying signaling pathways of ApoA-IV on eosinophil effector function in vitro and in vivo.
Background: Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive.
View Article and Find Full Text PDFProstaglandin (PG) D is the ligand for the G-protein coupled receptors DP1 (D-type prostanoid receptor 1) and DP2 (also known as chemoattractant receptor homologous molecule, expressed on Th2 cells; CRTH2). Both, DP1 and DP2 are expressed on the cellular surface of eosinophils; although it has become quite clear that PGD induces eosinophil migration mainly via DP2 receptors, the role of DP1 in eosinophil responses has remained elusive. In this study, we addressed how DP1 receptor signaling complements the pro-inflammatory effects of DP2.
View Article and Find Full Text PDFDisruption of the blood-air barrier, which is formed by lung microvascular endothelial and alveolar epithelial cells, is a hallmark of acute lung injury. It was shown that alveolar epithelial cells release an unidentified soluble factor that enhances the barrier function of lung microvascular endothelial cells. In this study we reveal that primarily prostaglandin (PG) E accounts for this endothelial barrier-promoting activity.
View Article and Find Full Text PDFEndothelial dysfunction is a hallmark of inflammatory conditions. We recently demonstrated that prostaglandin (PG)E enhances the resistance of pulmonary endothelium in vitro and counteracts lipopolysaccharide (LPS)-induced pulmonary inflammation in vivo via EP4 receptors. The aim of this study was to investigate the role of the EP1/EP3 receptor agonist 17-phenyl-trinor-(pt)-PGE on acute lung inflammation in a mouse model.
View Article and Find Full Text PDFImportance: A frequent adverse effect of mutation-specific BRAF inhibitor therapy is the induction of epithelial proliferations including cutaneous squamous cell carcinomas. To date, the only factor identified contributing to their development is the activation of the mitogen-activated signal transduction cascade by mutations in the RAS genes. However, these mutations explain only 60% of the tumors; hence, it is important to identify what is causing the remaining tumors.
View Article and Find Full Text PDFBackground: Increased vascular permeability is a fundamental characteristic of inflammation. Substances that are released during inflammation, such as prostaglandin (PG) E(2), can counteract vascular leakage, thereby hampering tissue damage.
Objective: In this study we investigated the role of PGE(2) and its receptors in the barrier function of human pulmonary microvascular endothelial cells and in neutrophil trafficking.