Feed-forward loops (FFLs) are among the most ubiquitously found motifs of reaction networks in nature. However, little is known about their stochastic behavior and the variety of network phenotypes they can exhibit. In this study, we provide full characterizations of the properties of stochastic multimodality of FFLs, and how switching between different network phenotypes are controlled.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Gene regulatory networks depict the interactions among genes, proteins, and other components of the cell. These interactions are stochastic when large differences in reaction rates and small copy number of molecules are involved. Discrete Chemical Master Equation (dCME) provides a general framework for understanding the stochastic nature of these networks.
View Article and Find Full Text PDFThe probability flux and velocity in stochastic reaction networks can help in characterizing dynamic changes in probability landscapes of these networks. Here, we study the behavior of three different models of probability flux, namely, the discrete flux model, the Fokker-Planck model, and a new continuum model of the Liouville flux. We compare these fluxes that are formulated based on, respectively, the chemical master equation, the stochastic differential equation, and the ordinary differential equation.
View Article and Find Full Text PDFStochasticity plays important roles in reaction systems. Vector fields of probability flux and velocity characterize time-varying and steady-state properties of these systems, including high probability paths, barriers, checkpoints among different stable regions, as well as mechanisms of dynamic switching among them. However, conventional fluxes on continuous space are ill-defined and are problematic when at the boundaries of the state space or when copy numbers are small.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Stochasticity plays important roles in regulation of biochemical reaction networks when the copy numbers of molecular species are small. Studies based on Stochastic Simulation Algorithm (SSA) has shown that a basic reaction system can display stochastic focusing (SF) by increasing the sensitivity of the network as a result of the signal noise. Although SSA has been widely used to study stochastic networks, it is ineffective in examining rare events and this becomes a significant issue when the tails of probability distributions are relevant as is the case of SF.
View Article and Find Full Text PDFBackground: Visualizing the complex probability landscape of stochastic gene regulatory networks can further biologists' understanding of phenotypic behavior associated with specific genes.
Results: We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN was designed in collaboration with bioinformaticians who research stochastic gene networks.
Multiscale Model Simul
June 2016
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed.
View Article and Find Full Text PDFThe discrete chemical master equation (dCME) provides a general framework for studying stochasticity in mesoscopic reaction networks. Since its direct solution rapidly becomes intractable due to the increasing size of the state space, truncation of the state space is necessary for solving most dCMEs. It is therefore important to assess the consequences of state space truncations so errors can be quantified and minimized.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2016
Gene regulatory networks depict the interactions between genes, proteins, and other components of the cell. These interactions often are stochastic that can influence behavior of the cells. Discrete Chemical Master Equation (dCME) provides a general framework for understanding the stochastic nature of these networks.
View Article and Find Full Text PDFGenome sequences provide the overall genetic blueprint of cells, but cells possessing the same genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular epigenetic states and that dictate the behavior of cells. Among these, networks of interacting molecules, often under stochastic control, depending on the specific wirings of molecular components and the physiological conditions, can have a different landscape of cellular states.
View Article and Find Full Text PDF