Publications by authors named "Anna Syguda"

Rising antimicrobial resistance is a critical threat to worldwide public health. To address the increasing antibiotic tolerance, diverse antimicrobial agents are examined for their ability to decrease bacterial resistance. One of the most relevant and persistent human pathogens is Pseudomonas aeruginosa.

View Article and Find Full Text PDF

In this work, amidequats and esterquats based on caprylic acid were investigated as promising compounds with surface properties and biological activity that are in harmony with the principles of green chemistry. Herein, caprylic acid, which is an essential component of the above compounds, is a noteworthy natural resource. Structural analysis was performed with the amphiphilic cations of the tested amidequats and esterquats, revealing two distinct factors, , the elongation of the alkyl chain and the presence of two different functional groups; these factors undoubtedly affect the desired biological activity.

View Article and Find Full Text PDF

A series of piperidinium-based herbicidal ionic liquids (HILs) were synthesized and investigated. The designed HILs, obtained with high yields, consisted of cation 1-alkyl-1-methylpiperidinium with surface activity and a commercially available herbicidal anion: (3,6-dichloro-2-methoxy)benzoates (dicamba). The above-mentioned compounds were characterized in terms of surface activity and phytotoxicity.

View Article and Find Full Text PDF

Witnessed by the ongoing spread of antimicrobial resistant bacteria as well as the recent global pandemic of the SARS-CoV-2 virus, the development of new disinfection strategies is of great importance, and novel substance classes as effective antimicrobials and virucides are urgently needed. Ionic liquids (ILs), low-melting salts, have been already recognized as efficient antimicrobial agents with prospects for antiviral potential. In this study, we examined the antiviral activity of 12 morpholinium based herbicidal ionic liquids with a tripartite test system, including enzyme inhibition tests, virucidal activity determination against five model viruses and activity against five bacterial species.

View Article and Find Full Text PDF

This study aimed to investigate the potential of 1-alkyl-1-methylpiperidinium bromides as fungicides and evaluate their impact on the human respiratory system when spread in the atmosphere. We investigated the behavior of membrane lipids and model membranes in the presence of a series of amphiphilic 1-alkyl-1-methylpiperidinium bromides ([MePipC][Br]), differing in the alkyl chain length (n = 4 - 18). The experiments were performed with the Langmuir monolayer technique using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and ergosterol (ERG)-the main components of lung surfactant and fungal plasma membrane, respectively and their mixtures with phospholipids and sterols.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is a multi-drug resistant (MDR) pathogen. It is classified by WHO as one of the most life-threatening pathogens causing nosocomial infections. Some of its clinical isolates and their subpopulations show high persistence to many antibiotics that are recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST).

View Article and Find Full Text PDF

Modern agricultural practices are often based on the use of mixtures of specific herbicides to achieve efficient crop protection. The major drawbacks of commercial herbicidal formulations include the necessity to incorporate toxic surfactants and high volatility of active substances. Transformation of herbicides into herbicidal ionic liquids (HILs) seems to be a promising alternative which allows to almost completely reduce volatility due to ionic interactions.

View Article and Find Full Text PDF

The transformation of agrochemicals into herbicidal ionic liquids (HILs) has been suggested as a solution to problems associated with commercial forms of herbicides. The aim of this review was to summarize the latest progress in the field of HILs, including their synthesis as well as physicochemical and biological properties, and to address the areas that require further research in order to ensure their safe commercialization (e.g.

View Article and Find Full Text PDF

The present study was focused on the application of an electrochemical oxidation process combined with biodegradation for the removal of novel Herbicidal Ionic Liquids (HILs) -promising protection plant products which incorporate herbicidal anions and ammonium cations. The influence of carbon chain length (n = 8, 10, 12, 14, 16, 18) in the dialkyldimethylammonium cations on electrochemical oxidation kinetics, degradation efficiency and biodegradation by activated sludge was investigated. It was established that the applied cation influenced the heterogeneous rate constant and diffusion coefficient of electrochemical oxidation.

View Article and Find Full Text PDF

The aim of the study was to evaluate the effect of herbicidal ionic liquids on the population changes of microorganisms used in a batch anaerobic digester. The influence of the following ionic liquids: benzalkonium (2,4-dichlorophenoxy)acetate (BA)(2,4-D), benzalkonium (4-chloro-2-methylphenoxy)acetate (BA)(MCPA), didecyldimethylammonium (2,4-dichlorophenoxy)acetate (DDA)(2,4-D), didecyldimethylammonium (4-chloro-2-methylphenoxy)acetate (DDA)(MCPA), as well as reference herbicides (4-chloro-2-methylphenoxy)acetic acid (MCPA) and (2,4-dichlorophenoxy)acetic acid (2,4-D) in the form of sodium salts on biogas production efficiency was investigated. The effective concentration (EC50) values were determined for all tested compounds.

View Article and Find Full Text PDF

Ionic liquids consisting of a combination of herbicidal anions with a quaternary ammonium cation act as efficient herbicides, which are under consideration to be used in the agriculture. In the present study, we used embryos of the zebrafish (Danio rerio) as a model to assess the toxic potential of ammonium-based ionic liquids for aquatic organisms. As we assumed interference of the partially hydrophobic ionic liquid cation with lipids, we investigated the adaptation response in the lipid composition of the zebrafish embryos, triggered by the ionic compound.

View Article and Find Full Text PDF

Combination of the hydrophilic herbicidal anion with hydrophobic, antimicrobial ammonium cation allows to obtain compounds in ionic liquid form with better properties then conventional herbicides. Both cation and anion can be modified by selection of herbicide and the length of alkyl chains in cation structure. However the knowledge of their potential toxic effects are still limited.

View Article and Find Full Text PDF

One of the attempts to create more effective herbicidal compounds includes the use of ionic liquids. Herbicidal ionic liquids have more effective biological activity, they are less volatile, more thermally stable, and exhibit superior efficiency in comparison to typically employed herbicides, allowing the reduction of the herbicide dose applied per hectare. However, studies on the environmental toxicity of this group of compounds are very rarely available.

View Article and Find Full Text PDF

This study focused on evaluating the toxicity as well as primary and ultimate biodegradability of morpholinium herbicidal ionic liquids (HILs), which incorporated MCPA, MCPP, 2,4-D or Dicamba anions. The studied HILs were also subjected to determination of surface active properties in order to assess their influence on toxicity and biodegradability. The study was carried out with microbiota isolated from different environmental niches: sediments from river channel, garden soil, drainage trench collecting agricultural runoff stream, agricultural soil and municipal waste repository.

View Article and Find Full Text PDF

Different ionic liquids were used as solvents for the effective extraction of the active metabolites of the fruit bodies of C. cibarius. The type of ionic liquid was found to play a significant role in this process.

View Article and Find Full Text PDF

A total of sixty-three choline derivative-based ionic liquids in the forms of chlorides, acesulfamates, and bis(trifluoromethylsulfonyl)imides have been prepared and their physical properties (density, viscosity, solubility, and thermal stability) have been determined. Thirteen of these salts are known chlorides: precursors to the 26 water-soluble acesulfamates, 12 acesulfamates only partially miscible with water, and 12 water-insoluble imides. The crystal structures for two of the chloride salts-(2-hydroxyethyl)dimethylundecyloxymethylammonium chloride and cyclododecyloxymethyl(2-hydroxyethyl)dimethylammonium chloride-were determined.

View Article and Find Full Text PDF