We investigate the competition between the associations of oppositely charged protein-surfactant complexes and oppositely charged surfactant complexes. In all systems examined, the most favorable complexation is the one between the two oppositely charged surfactant ions, despite the strong binding known, for example, dodecyl sulfate, DS-, to lysozyme. Thus, the phase behavior of the catanionic system is dominating the features observed also in the presence of protein.
View Article and Find Full Text PDFControlled ensemble formation of protein-surfactant systems provides a fundamental concept for the realization of nanoscale devices with self-organizing capability. In this context, spectroscopic monitoring of pigment-containing proteins yields detailed structural information. Here we have studied the association behavior of the bacterial light-harvesting protein LH2 from Rhodobacter spheroides in an n,n-dimethyldodecylamine-n-oxide/water environment.
View Article and Find Full Text PDF