Publications by authors named "Anna Steinert"

The intestinal epithelial barrier separates the host from the microbiota that is normally tolerated or ignored. The breach of this barrier results in the entrance of bacteria or bacteria-derived products into the host, accessing the host circulation and inner organs leading to the uncontrolled inflammation as observed in patients with inflammatory bowel disease (IBD), that are characterized by an increased intestinal epithelial permeability. To mimic the entrance of bacterial-derived compounds into the host, an endotoxemia model has been adopted in which lipopolysaccharide (LPS), a component of the outer cell wall of Gram-negative bacteria, were injected into mice.

View Article and Find Full Text PDF

Unlabelled: Interleukin IL26 supports killing of microbes and the innate sensing of bacterial-derived DNA (bactDNA). We evaluated the relationship between IL26 serum levels and bactDNA translocation in Crohn's disease (CD). We ran a prospective study on CD patients in remission.

View Article and Find Full Text PDF

IL-19, a member of the IL-10 cytokine family that signals through the IL-20 receptor type I (IL-20Rα:IL-20Rβ), is a cytokine whose function is not completely known. In this article, we show that the expression of in biopsies of patients with active ulcerative colitis was increased compared with patients with quiescent ulcerative colitis and that colitis was attenuated in IL-19-deficient mice. The disruption of the epithelial barrier with dextran sodium sulfate leads to increased IL-19 expression.

View Article and Find Full Text PDF

An understanding of mucosal immunity is essential for the comprehension of intestinal diseases that are often caused by a complex interplay between host factors, environmental influences and the intestinal microbiota. Not only improvements in endoscopic techniques, but also advances in high throughput sequencing technologies, have expanded knowledge of how intestinal diseases develop. This review discusses how the host interacts with intestinal microbiota by the direct contact of host receptors with highly conserved structural motifs or molecules of microbes and also by microbe-derived metabolites (produced by the microbe during adaptation to the gut environment), such as short-chain fatty acids, vitamins, bile acids and amino acids.

View Article and Find Full Text PDF

Postnatal colonization of the body with microbes is assumed to be the main stimulus to postnatal immune development. By transiently colonizing pregnant female mice, we show that the maternal microbiota shapes the immune system of the offspring. Gestational colonization increases intestinal group 3 innate lymphoid cells and F4/80(+)CD11c(+) mononuclear cells in the pups.

View Article and Find Full Text PDF