Publications by authors named "Anna Sitkowska"

The amniotic membrane is widely used in the treatment of chronic wounds, in toxic epidermal necrolysis (TEN), and in the treatment of burns. In our clinical practice, we use amniotic dressings on shallow skin wounds caused by burns. Counteracting infections is an important aspect of working with burn wounds.

View Article and Find Full Text PDF

Gel dressings, composed of polymers both natural and synthetic, are successfully used in the treatment of burn wounds. They protect the burn wound site against adverse external factors, ensure an adequate level of tissue hydration, have soothing and pain-relieving properties, and also support the healing process and reduce the risk of pathological scars. Another promising material that can be used in the wound-healing process is an amnion membrane.

View Article and Find Full Text PDF

A burn is a sudden injury which immediate or long-term consequences may be life-threatening for the patient. A mass disaster event may involve large numbers of severely burned patients. Patients of this type typically have a limited area of healthy, unburned skin from which an autologous split thickness skin graft could be collected.

View Article and Find Full Text PDF

In this work, we sought to examine whether the presence of alkyl substituents randomly distributed within the main chain of a 2-isopropyl-2-oxazoline-based copolymer will decrease its ability to crystallize when compared to its homopolymer. At the same time, we aimed to ensure an appropriate hydrophilic/lipophilic balance in the copolymer and maintain the phase transition in the vicinity of the human body temperature. For this reason, copolymers of 2-ethyl-4-methyl-2-oxazoline and 2-isopropyl-2-oxazoline were synthesized.

View Article and Find Full Text PDF

3D fine porous structures obtained by electrospinning a poly[(R,S)-3-hydroxybutyrate] (aPHB)/ poly[(R)-3-hydroxybutyrate] (PHB) (85/15 w/w) blend were successfully modified with human procollagen type I by simple immersion of the polyester scaffold in an aqueous solution of the protein. Effective modification of the scaffold with human procollagen I was confirmed by an immunodetection test, which revealed the presence of the procollagen type I as an outer layer even on inner structures of the porous matrixes. Biological tests of 3D fabrics made of the PHB blend provide support for the adhesion and proliferation of human fibroblasts, while their modification with procollagen type I increased the biocompatibility of the final scaffolds significantly, as shown by the notable increase in the number of attached cells during the early hours of their incubation.

View Article and Find Full Text PDF