Publications by authors named "Anna Singer"

The chromatophores in are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores.

View Article and Find Full Text PDF

The MX dynamin GTPases inhibit diverse viruses at early post-entry phases. While MXA acts antiviral against influenza viruses, the anti HIV-1 activity of MXB was discovered recently. Here, we have studied the antiviral effect of MX proteins on murine cytomegalovirus (MCMV).

View Article and Find Full Text PDF

CRISPR-Cas systems offer versatile technologies for genome engineering, yet their implementation has been outpaced by ongoing discoveries of new Cas nucleases and anti-CRISPR proteins. Here, we present the use of E. coli cell-free transcription-translation (TXTL) systems to vastly improve the speed and scalability of CRISPR characterization and validation.

View Article and Find Full Text PDF

The endosymbiotic acquisition of mitochondria and plastids more than 1 Ga ago profoundly impacted eukaryote evolution. At the heart of understanding organelle evolution is the re-arrangement of the endosymbiont proteome into a host-controlled organellar proteome. However, early stages in this process as well as the timing of events that underlie organelle integration remain poorly understood.

View Article and Find Full Text PDF

Plastids, the photosynthetic organelles, originated >1 billion y ago via the endosymbiosis of a cyanobacterium. The resulting proliferation of primary producers fundamentally changed global ecology. Endosymbiotic gene transfer (EGT) from the intracellular cyanobacterium to the nucleus is widely recognized as a critical factor in the evolution of photosynthetic eukaryotes.

View Article and Find Full Text PDF

Foamy viruses (FV) are retroviruses that are widely distributed in primate and non-primate animal species. We tested here FV with capsids of simian and non-simian origin for sensitivity to interferon-β (IFN-β). Our data show significant inhibition of FV by IFN-β early in infection of human HOS and THP-1 but not of HEK293T cells.

View Article and Find Full Text PDF