Publications by authors named "Anna Shiriaeva"

Article Synopsis
  • Microcrystal electron diffraction (MicroED) is an advanced structural method useful for analyzing a variety of samples, including small molecules and proteins, using cryogenic electron microscopy techniques.
  • The method captures diffraction data through the continuous rotation of small 3D crystals while being observed by a high-speed camera, then utilizes X-ray crystallographic software for structure determination.
  • This guide provides detailed protocols for preparing samples, emphasizing that individual crystals need tailored growth conditions, and aids those with backgrounds in biochemistry and crystallography in optimizing their MicroED experiments, which can take from one day to several weeks.
View Article and Find Full Text PDF

Human lens fiber membrane intrinsic protein MP20 is the second most abundant membrane protein of the human eye lens. Despite decades of effort its structure and function remained elusive. Here, we determined the MicroED structure of full-length human MP20 in lipidic-cubic phase to a resolution of 3.

View Article and Find Full Text PDF

Type VI CRISPR-Cas systems are among the few CRISPR varieties that target exclusively RNA. The CRISPR RNA-guided, sequence-specific binding of target RNAs, such as phage transcripts, activates the type VI effector, Cas13. Once activated, Cas13 causes collateral RNA cleavage, which induces bacterial cell dormancy, thus protecting the host population from the phage spread.

View Article and Find Full Text PDF

Spontaneous or induced DNA lesions can result in stable gene mutations and chromosomal aberrations due to their inaccurate repair, ultimately resulting in phenotype changes. Some DNA lesions per se may interfere with transcription, leading to temporary phenocopies of mutations. The direct impact of primary DNA lesions on phenotype before their removal by repair is not well understood.

View Article and Find Full Text PDF

The small size and flexibility of G protein-coupled receptors (GPCRs) have long posed a significant challenge to determining their structures for research and therapeutic applications. Single particle cryogenic electron microscopy (cryoEM) is often out of reach due to the small size of the receptor without a signaling partner. Crystallization of GPCRs in lipidic cubic phase (LCP) often results in crystals that may be too small and difficult to analyze using X-ray microcrystallography at synchrotron sources or even serial femtosecond crystallography at X-ray free electron lasers.

View Article and Find Full Text PDF

Crystallizing G protein-coupled receptors (GPCRs) in lipidic cubic phase (LCP) often yields crystals suited for the cryogenic electron microscopy (cryoEM) method microcrystal electron diffraction (MicroED). However, sample preparation is challenging. Embedded crystals cannot be targeted topologically.

View Article and Find Full Text PDF

Human APOBEC3G (A3G) is a virus restriction factor that inhibits HIV-1 replication and triggers lethal hypermutation on viral reverse transcripts. HIV-1 viral infectivity factor (Vif) breaches this host A3G immunity by hijacking a cellular E3 ubiquitin ligase complex to target A3G for ubiquitination and degradation. The molecular mechanism of A3G targeting by Vif-E3 ligase is unknown, limiting the antiviral efforts targeting this host-pathogen interaction crucial for HIV-1 infection.

View Article and Find Full Text PDF

CRISPR-Cas systems provide prokaryotes with adaptive immunity against foreign nucleic acids. In , immunity is acquired upon integration of 33-bp spacers into CRISPR arrays. DNA targets complementary to spacers get degraded and serve as a source of new spacers during a process called primed adaptation.

View Article and Find Full Text PDF

Modulators of the G protein-coupled A adenosine receptor (AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an AAR agonist into an antagonist. We synthesized and characterized a novel AAR antagonist, (LJ-4517), with = 18.

View Article and Find Full Text PDF

The past fifty years have been marked by the surge of neurodegenerative diseases. Unfortunately, current treatments are only symptomatic. Hence, the search for new and innovative therapeutic targets for curative treatments becomes a major challenge.

View Article and Find Full Text PDF

This article documents a keynote seminar presented at the IUCr Congress in Prague, 2021. The cryo-EM method microcrystal electron diffraction is described and put in the context of macromolecular electron crystallography from its origins in 2D crystals of membrane proteins to today's application to 3D crystals a millionth the size of that needed for X-ray crystallography. Milestones in method development and applications are described with an outlook to the future.

View Article and Find Full Text PDF
Article Synopsis
  • GPCRs are special proteins in our body that help with important processes like communication between cells.
  • To study these proteins, scientists have to create tiny crystals, which are often too small to see using regular methods.
  • This study found a new way to prepare tiny crystals of a specific GPCR so they could be studied in detail, helping to show how these proteins work and paving the way for future research.
View Article and Find Full Text PDF

CRISPR (lustered egularly nterspaced hort alindromic epeats)-Cas (CRISPR-associated) systems provide prokaryotes with efficient protection against foreign nucleic acid invaders. We have recently demonstrated the defensive interference function of a CRISPR-Cas system from () , a major human enteropathogen, and showed that it could be harnessed for efficient genome editing in this bacterium. However, molecular details are still missing on CRISPR-Cas function for adaptation and sequence requirements for both interference and new spacer acquisition in this pathogen.

View Article and Find Full Text PDF

Prostaglandin D (PGD) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD derivative, 15R-methyl-PGD (15mPGD), by serial femtosecond crystallography.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists learned about a special process called priming in Type I CRISPR systems that helps them grab new pieces of DNA really well.
  • This process involves a group of proteins called Cascade-crRNA, which helps find the DNA and signals another protein, Cas3, to get involved.
  • They did experiments using specific antibodies to see if the Cas1 and Cas3 proteins work together, and they found out they are connected when the system is adapting to new DNA.
View Article and Find Full Text PDF

CRISPR-associated proteins 1 and 2 (Cas1-2) are necessary and sufficient for new spacer acquisition in some CRISPR-Cas systems (e.g., type I-E), but adaptation in other systems (e.

View Article and Find Full Text PDF

Prokaryotic adaptive immunity is built when short DNA fragments called spacers are acquired into CRISPR (clustered regularly interspaced short palindromic repeats) arrays. CRISPR adaptation is a multistep process which comprises selection, generation, and incorporation of prespacers into arrays. Once adapted, spacers provide immunity through the recognition of complementary nucleic acid sequences, channeling them for destruction.

View Article and Find Full Text PDF

Rational structure-based drug design (SBDD) relies on the availability of a large number of co-crystal structures to map the ligand-binding pocket of the target protein and use this information for lead-compound optimization via an iterative process. While SBDD has proven successful for many drug-discovery projects, its application to G protein-coupled receptors (GPCRs) has been limited owing to extreme difficulties with their crystallization. Here, a method is presented for the rapid determination of multiple co-crystal structures for a target GPCR in complex with various ligands, taking advantage of the serial femtosecond crystallography approach, which obviates the need for large crystals and requires only submilligram quantities of purified protein.

View Article and Find Full Text PDF

Bacteria and archaea use CRISPR-Cas adaptive immunity systems to interfere with viruses, plasmids, and other mobile genetic elements. During the process of adaptation, CRISPR-Cas systems acquire immunity by incorporating short fragments of invaders' genomes into CRISPR arrays. The acquisition of fragments of host genomes leads to autoimmunity and may drive chromosomal rearrangements, negative cell selection, and influence bacterial evolution.

View Article and Find Full Text PDF

The G protein-coupled cysteinyl leukotriene receptor CysLTR mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLTR antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLTR bound to two chemically distinct antagonists, zafirlukast and pranlukast.

View Article and Find Full Text PDF

Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer.

View Article and Find Full Text PDF

Change history: In this Letter, the rotation signs around 90°, 135° and 15° were missing and in the HTML, Extended Data Tables 2 and 3 were the wrong tables; these errors have been corrected online.

View Article and Find Full Text PDF

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms by synchronization to environmental cues and is involved in diverse physiological processes such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function. Melatonin is formed in the pineal gland in a light-regulated manner by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness by activating two high-affinity G-protein-coupled receptors, type 1A (MT) and type 1B (MT). Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden.

View Article and Find Full Text PDF