Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide with potent anti-inflammatory, bronchodilatory and immunomodulatory functions, is secreted by intrinsic neurons innervating all exocrine glands, including the pancreas, in which it exerts a regulatory function in the secretion of insulin and glucagon. Cystic fibrosis-related diabetes (CFRD) is the most common co-morbidity associated with cystic fibrosis (CF), impacting approximately 50% of adult patients. We recently demonstrated a 50% reduction of VIP abundance in the lungs, duodenum and sweat glands of C57Bl/6 CF mice homozygous for the F508del-CFTR disease-causing mutation.
View Article and Find Full Text PDFVasoactive Intestinal Peptide (VIP) is the major physiological agonist of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride channel activity. VIP functions as a neuromodulator and neurotransmitter secreted by neurons innervating all exocrine glands. VIP is also a potent vasodilator and bronchodilator that regulates exocrine gland secretions, contributing to local innate defense by stimulating the movement of water and chloride transport across intestinal and tracheobronchial epithelia.
View Article and Find Full Text PDFOur understanding of the multiorgan pathology of cystic fibrosis (CF) has improved impressively during the last decades, but we still lack a full comprehension of the disease progression. Animal models have greatly contributed to the elucidation of specific mechanisms involved in CF pathophysiology and the development of new therapies. Soon after the cloning of the CF transmembrane conductance regulator () gene in 1989, the first mouse model was generated and this model has dominated CF research ever since.
View Article and Find Full Text PDFVarious specific human glucocorticoid receptor (NR3C1) gene polymorphisms have been described in multiple sclerosis (MS) patients and correlated with disease progression, susceptibility and aggressiveness. Herein, we investigated the presence of gene alterations in the entire coding region of the NR3C1 in MS patients of variable clinical status (CIS, RRMS and SPMS) and the association(s) of these alterations with severity of disease (EDSS), response to glucocorticoid (GC) treatment and clinical improvement. Sixty Caucasian Greek MS patients were included.
View Article and Find Full Text PDF