Publications by authors named "Anna Segerman"

The migration of neural progenitor cells (NPCs) to their final destination during development follows well-defined pathways, such as along blood vessels. Cells originating from the highly malignant tumor glioblastoma (GBM) seem to exploit similar routes for infiltrating the brain parenchyma. In this report, we have examined the migration of GBM cells using three-dimensional high-resolution confocal microscopy in brain tumors derived from eight different human GBM cell lines xenografted into immunodeficient mice.

View Article and Find Full Text PDF

Tumor cell heterogeneity is a crucial characteristic of malignant brain tumors and underpins phenomena such as therapy resistance and tumor recurrence. Advances in single-cell analysis have enabled the delineation of distinct cellular states of brain tumor cells, but the time-dependent changes in such states remain poorly understood. Here, we construct quantitative models of the time-dependent transcriptional variation of patient-derived glioblastoma (GBM) cells.

View Article and Find Full Text PDF

Grade IV astrocytoma/glioblastoma multiforme (GBM) is essentially incurable, partly due to its heterogenous nature, demonstrated even within the glioma-initiating cell (GIC) population. Increased therapy resistance of GICs is coupled to transition into a mesenchymal (MES) cell state. The GBM MES molecular signature displays a pronounced inflammatory character and its expression vary within and between tumors.

View Article and Find Full Text PDF

Background: Pharmacological treatment of complex diseases using more than two drugs is commonplace in the clinic due to better efficacy, decreased toxicity and reduced risk for developing resistance. However, many of these higher-order treatments have not undergone any detailed preceding in vitro evaluation that could support their therapeutic potential and reveal disease related insights. Despite the increased medical need for discovery and development of higher-order drug combinations, very few reports from systematic large-scale studies along this direction exist.

View Article and Find Full Text PDF

Background: Large-scale pairwise drug combination analysis has lately gained momentum in drug discovery and development projects, mainly due to the employment of advanced experimental-computational pipelines. This is fortunate as drug combinations are often required for successful treatment of complex diseases. Furthermore, most new drugs cannot totally replace the current standard-of-care medication, but rather have to enter clinical use as add-on treatment.

View Article and Find Full Text PDF

Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca and K channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown.

View Article and Find Full Text PDF

Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome.

View Article and Find Full Text PDF

Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell's phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics.

View Article and Find Full Text PDF

Tumor-initiating cells are a subpopulation in aggressive cancers that exhibit traits shared with stem cells, including the ability to self-renew and differentiate, commonly referred to as stemness. In addition, such cells are resistant to chemo- and radiation therapy posing a therapeutic challenge. To uncover stemness-associated functions in glioma-initiating cells (GICs), transcriptome profiles were compared to neural stem cells (NSCs) and gene ontology analysis identified an enrichment of Ca2+ signaling genes in NSCs and the more stem-like (NSC-proximal) GICs.

View Article and Find Full Text PDF

Hematopoietic cells are attractive targets for gene therapy, but the conventional adenovirus (Ad) vectors, based on Ad5, transduce these cells inefficiently. One reason for low permissiveness of hematopoietic cells to infection by species C Ads appears to be inefficient attachment. Vectors pseudotyped with species B fibers are clearly more efficient at transducing hematopoietic cells than Ad5.

View Article and Find Full Text PDF

The major determinant of adenovirus (Ad) attachment to host cells is the C-terminal knob domain of the trimeric fiber protein. Ad type 11p (Ad11p; species B2) in contrast to Ad7p (species B1) utilizes at least two different cellular attachment receptors, designated sBAR (species B adenovirus receptor) and sB2AR (species B2 adenovirus receptor). CD46 has recently been identified as one of the Ad11p attachment receptors.

View Article and Find Full Text PDF

Gene transfer into human hematopoietic stem cells using Ad5 is inefficient due to lack of the primary receptor CAR and the secondary receptors alphavbeta3 integrin and alphavbeta5 integrin, and due to the high seroprevalence of Ad5 antibodies in most adults, resulting in diminished gene transduction. In the present study, we screened six species (species A-F) of adenovirus, displaying different tropisms for interaction with CD34+ cells, at the level of virus attachment and expression. Virus particles were biotinylated and their binding capacity was determined by FACS analysis using streptavidin-FITC.

View Article and Find Full Text PDF

The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR.

View Article and Find Full Text PDF

Unlike most adenovirus (Ad) serotypes, the species B Ads do not use the coxsackie-adenovirus receptor as an attachment receptor. The species B attachment receptor(s) has not yet been identified and is also poorly characterized. Species B Ads can be further divided into species B1 and B2 Ads, and these display different organ tropisms, suggesting a difference in receptor usage.

View Article and Find Full Text PDF