Standard and easily accessible cross-thematic spatial databases are key resources in ecological research. In Switzerland, as in many other countries, available data are scattered across computer servers of research institutions and are rarely provided in standard formats (e.g.
View Article and Find Full Text PDFLeaf spectra are integrated foliar phenotypes that capture a range of traits and can provide insight into ecological processes. Leaf traits, and therefore leaf spectra, may reflect belowground processes such as mycorrhizal associations. However, evidence for the relationship between leaf traits and mycorrhizal association is mixed, and few studies account for shared evolutionary history.
View Article and Find Full Text PDFPlant ecologists use functional traits to describe how plants respond to and influence their environment. Reflectance spectroscopy can provide rapid, non-destructive estimates of leaf traits, but it remains unclear whether general trait-spectra models can yield accurate estimates across functional groups and ecosystems. We measured leaf spectra and 22 structural and chemical traits for nearly 2000 samples from 103 species.
View Article and Find Full Text PDFImaging spectroscopy provides the opportunity to incorporate leaf and canopy optical data into ecological studies, but the extent to which remote sensing of vegetation can enhance the study of belowground processes is not well understood. In terrestrial systems, aboveground and belowground vegetation quantity and quality are coupled, and both influence belowground microbial processes and nutrient cycling. We hypothesized that ecosystem productivity, and the chemical, structural and phylogenetic-functional composition of plant communities would be detectable with remote sensing and could be used to predict belowground plant and soil processes in two grassland biodiversity experiments: the BioDIV experiment at Cedar Creek Ecosystem Science Reserve in Minnesota and the Wood River Nature Conservancy experiment in Nebraska.
View Article and Find Full Text PDFMonitoring the rapid and extensive changes in plant species distributions occurring worldwide requires large-scale, continuous and repeated biodiversity assessments. Imaging spectrometers are at the core of novel spaceborne sensor fleets designed for this task, but the degree to which they can capture plant species composition and diversity across ecosystems has yet to be determined. Here we use imaging spectroscopy and vegetation data collected by the National Ecological Observatory Network (NEON) to show that at the landscape level, spectral beta-diversity-calculated directly from spectral images-captures changes in plant species composition across all major biomes in the United States ranging from arctic tundra to tropical forests.
View Article and Find Full Text PDFReflectance spectra provide integrative measures of plant phenotypes by capturing chemical, morphological, anatomical and architectural trait information. Here, we investigate the linkages between plant spectral variation, and spectral and resource-use complementarity that contribute to ecosystem productivity. In both a forest and prairie grassland diversity experiment, we delineated -dimensional hypervolumes using wavelength bands of reflectance spectra to test the association between the spectral space occupied by individual plants and their growth, as well as between the spectral space occupied by plant communities and ecosystem productivity.
View Article and Find Full Text PDFBacterial arylmalonate decarboxylase (AMDase) and evolved variants have become a valuable tool with which to access both enantiomers of a broad range of chiral arylaliphatic acids with high optical purity. Yet, the molecular principles responsible for the substrate scope, activity, and selectivity of this enzyme are only poorly understood to date, greatly hampering the predictability and design of improved enzyme variants for specific applications. In this work, empirical valence bond and metadynamics simulations were performed on wild-type AMDase and variants thereof to obtain a better understanding of the underlying molecular processes determining reaction outcome.
View Article and Find Full Text PDFLeaf reflectance spectra have been increasingly used to assess plant diversity. However, we do not yet understand how spectra vary across the tree of life or how the evolution of leaf traits affects the differentiation of spectra among species and lineages. Here we describe a framework that integrates spectra with phylogenies and apply it to a global dataset of over 16 000 leaf-level spectra (400-2400 nm) for 544 seed plant species.
View Article and Find Full Text PDFPlant spectral diversity - how plants differentially interact with solar radiation - is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (β; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ-, β-, and α-diversity, as well as the contributions of individual plant communities to spectral diversity.
View Article and Find Full Text PDFBiodiversity promotes ecosystem function as a consequence of functional differences among organisms that enable resource partitioning and facilitation. As the need for biodiversity assessments increases in the face of accelerated global change, novel approaches that are rapid, repeatable and scalable are critical, especially in ecosystems for which information about species identity and the number of species is difficult to acquire. Here, we present 'spectral diversity'-a spectroscopic index of the variability of electromagnetic radiation reflected from plants measured in the visible, near-infrared and short-wave infrared regions (400-2,400 nm).
View Article and Find Full Text PDFEne reductases from the Old Yellow Enzyme (OYE) family reduce the C=C double bond in α,β-unsaturated compounds bearing an electron-withdrawing group, for example, a carbonyl group. This asymmetric reduction has been exploited for biocatalysis. Going beyond its canonical function, we show that members of this enzyme family can also catalyze the formation of C-C bonds.
View Article and Find Full Text PDFPremise Of The Study: Aspen groves along the Niobrara River in Nebraska have long been a biogeographic curiosity due to morphological differences from nearby remnant populations. Pleistocene hybridization between and has been proposed, but the nearest populations are currently several hundred kilometers east. We tested the hybrid-origin hypothesis using genetic data and characterized putative hybrids phenotypically.
View Article and Find Full Text PDFIn the version of this Comment previously published, in Box 1, the spacing of the GEDI footprints should have read 60 m along the track, not 25 m. Also the second affiliation for Susan Ustin was incorrect, she is only associated with the University of California, Davis. These errors have now been corrected.
View Article and Find Full Text PDFBackground: The spatial distribution of forage resources is a major driver of animal movement patterns. Understanding where animals forage is important for the conservation of multi-species communities, since interspecific competition can emerge if different species use the same depletable resources. However, determining forage resources in a spatially continuous fashion in alpine grasslands at high spatial resolution was challenging up to now, because terrain heterogeneity causes vegetation characteristics to vary at small spatial scales, and methods for detection of behavioural phases in animal movement patterns were not widely available.
View Article and Find Full Text PDFIntroduction: The development of resistance by bacterial species is a compelling issue to reconsider indications and administration of antibiotic treatment. Adequate indications and duration of therapy are particularly important for the use of highly potent substances in the intensive care setting. Until recently, no laboratory marker has been available to differentiate bacterial infection from viral or non-infectious inflammatory reaction; however, over the past years, procalcitonin (PCT) is the first among a large array of inflammatory variables that offers this possibility.
View Article and Find Full Text PDF