The human luteinizing hormone receptor (hLH-R) is a member of the glycoprotein hormone family of G-protein-coupled receptors (GPCRs), activated by luteinizing hormone (hLH) and essentially involved in the regulation of sex hormone production. Thus, hLH-R represents a valid target for the treatment of sex hormone-dependent cancers and diseases (polycystic ovary syndrome, uterine fibroids, endometriosis) as well as contraception. Screening of the Bayer compound library led to the discovery of tetrahydrothienopyridine derivatives as novel, small-molecule (SMOL) hLH-R inhibitors and to the development of BAY-298, the first nanomolar hLH-R antagonist reducing sex hormone levels in vivo.
View Article and Find Full Text PDFAdvancement in the field of computational research has made it possible for the in silico methods to offer significant benefits to both regulatory needs and requirements for risk assessments, and pharmaceutical industry to assess the safety profile of a chemical. Here, we present ProTox-II that incorporates molecular similarity, pharmacophores, fragment propensities and machine-learning models for the prediction of various toxicity endpoints; such as acute toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, adverse outcomes pathways (Tox21) and toxicity targets. The predictive models are built on data from both in vitro assays (e.
View Article and Find Full Text PDFImmunotoxicity, defined as adverse effects of xenobiotics on the immune system, is gaining increasing attention in the approval process of industrial chemicals and drugs. In-vivo and ex-vivo experiments have been the gold standard in immunotoxicity assessment so far, so the development of in-vitro and in-silico alternatives is an important issue. In this paper we describe a widely applicable, easy-to use computational approach which can serve as an initial immunotoxicity screen of new chemical entities.
View Article and Find Full Text PDFUnbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates.
View Article and Find Full Text PDFStructurally related inhibitors of a shared therapeutic target may differ regarding potential toxicity issues that are caused by different off-target bindings. We devised a differential competition capture compound mass spectrometry (dCCMS) strategy to effectively differentiate off-target profiles. Tolcapone and entacapone are potent inhibitors of catechol-O-methyl transferase (COMT) for the treatment of Parkinson's disease.
View Article and Find Full Text PDFS-Adenosyl-l-methionine (SAM) is recognized as an important cofactor in a variety of biochemical reactions. As more proteins and pathways that require SAM are discovered, it is important to establish a method to quickly identify and characterize SAM binding proteins. The affinity of S-adenosyl-l-homocysteine (SAH) for SAM binding proteins was used to design two SAH-derived capture compounds (CCs).
View Article and Find Full Text PDFThe primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone.
View Article and Find Full Text PDFRecent studies have revealed that compounds believed to be highly selective frequently address multiple target proteins. We investigated the protein interaction profile of the widely prescribed thrombin inhibitor dabigatran (1), resulting in the identification and subsequent characterization of an additional target enzyme. Our findings are based on an unbiased functional proteomics approach called capture compound mass spectrometry (CCMS) and were confirmed by independent biological assays.
View Article and Find Full Text PDFCapture Compound Mass Spectrometry (CCMS) is a platform technology for the functional isolation of subproteomes. Here we report the synthesis of two new kinase Capture Compounds (CCs) based on the tyrosine-kinase specific inhibitors dasatinib and imatinib and compare their interaction profiles to that of our previously reported staurosporine-CCs. CCs are tri-functional molecules: they comprise a sorting function (e.
View Article and Find Full Text PDFMelanin-concentrating hormone (MCH) regulates feeding and energy homeostasis through interaction with its receptor, the melanin-concentrating receptor 1 (MCHR1), making it a target in the treatment of obesity. Molecular modeling and docking studies were performed in order to find a binding model for the docking of two new series of MCHR1 antagonists to the receptor. Results suggested interactions between the ligands and two glutamines (Gln5.
View Article and Find Full Text PDFThe central role of kinases in cell signaling has set them in the focus of biomedical research. In functional proteomics analyses, large- scale profiling of kinases has become feasible through the use of affinity pulldown beads that carry immobilized kinase inhibitors. As an alternative approach to solid phase beads, Capture Compound Mass Spectrometry (CCMS) enables the functional isolation of protein-classes on the basis of small molecule-protein interactions in solution.
View Article and Find Full Text PDFThe functional isolation of proteome subsets based on small molecule-protein interactions is an increasingly popular and promising field in functional proteomics. Entire protein families may be profiled on the basis of their common interaction with a metabolite or small molecule inhibitor. This is enabled by novel multifunctional small molecule probes.
View Article and Find Full Text PDFCapture compound mass spectrometry (CCMS) is a novel technology that helps understand the molecular mechanism of the mode of action of small molecules. The Capture Compounds are trifunctional probes: A selectivity function (the drug) interacts with the proteins in a biological sample, a reactivity function (phenylazide) irreversibly forms a covalent bond, and a sorting function (biotin) allows the captured protein(s) to be isolated for mass spectrometric analysis. Tolcapone and entacapone are potent inhibitors of catechol-O-methyltransferase (COMT) for the treatment of Parkinson's disease.
View Article and Find Full Text PDFMany MAS (magic angle spinning) solid-state NMR investigations of biologically relevant protein samples are hampered by poor resolution, particularly in the 15N chemical shift dimension. We show that dynamics in the nanosecond-microsecond time scale in solid-state samples can induce significant line broadening of 15N resonances in solid-state NMR experiments. Averaging of 15NH(alpha/beta) multiplet components due to 1H decoupling induces effective relaxation of the 15N coherence in case the N-H spin pair undergoes significant motion.
View Article and Find Full Text PDFNew antimicrobial compounds are of major importance because of the growing problem of bacterial resistance and antimicrobial peptides have been gaining a lot of interest. Their mechanism of action, however, is often obscure. Here a set of non-peptidic compounds with antimicrobial activity are presented that have been designed based on criteria derived from three-dimensional structures of antimicrobial peptides.
View Article and Find Full Text PDFThe response of living cells of the trabecular meshwork to synthetic ion channels is described. The THF-gramicidin hybrids THF-gram and THF-gram-TBDPS as well as a linked gA-TBDPS and gramicidin A were applied to cultured ocular trabecular meshwork cells. THF-gram application (minimal concentration, 10(-8) M; saturation, 10(-7) M) led to an additional conductance which displayed characteristics of weak Eisenman-I-selective cation channels, no cell destruction, an asymmetric change of the inward/outward currents, and higher current densities using Cs(+) as charge carrier compared to Na(+) and K(+).
View Article and Find Full Text PDF