Publications by authors named "Anna Schito"

Background/objectives: Oral diseases causing mucosal lesions are normally treated with local or systemic anti-inflammatory, analgesic and antimicrobial agents. The development of topical formulations, including wound-healing promoters, might speed up the recovery process, improving patients' quality of life, and reduce the risk of deterioration in health conditions. In this study, a mucoadhesive multilayer film, including a novel biocompatible substance (solubilized eggshell membrane, SESM), was rationally designed.

View Article and Find Full Text PDF

The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial effects, QPSs have been studied to a lesser extent.

View Article and Find Full Text PDF

The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods.

View Article and Find Full Text PDF

To meet the urgent need for new antibacterial molecules, a small library of pyrazolyl thioureas (PTUs) was designed, synthesized and tested against difficult-to-treat human pathogens. The prepared derivatives are characterized by a carboxyethyl functionality on C4 and different hydroxyalkyl chains on N1. Compounds - were first evaluated against a large panel of Gram-positive and Gram-negative pathogens.

View Article and Find Full Text PDF

Organic ammonium and phosphonium salts exert excellent antimicrobial effects by interacting lethally with bacterial membranes. Particularly, quaternary ammonium lipids have demonstrated efficiency both as gene vectors and antibacterial agents. Here, aiming at finding new antibacterial devices belonging to both classes, we prepared a water-soluble quaternary ammonium lipid () and a phosphonium salt () by designing a synthetic path where would be an intermediate to achieve .

View Article and Find Full Text PDF

Polyphenols have attracted attention in the fight against antibiotic-resistant bacteria, as they show antibacterial action. Considering that polyphenols inhibit FF-ATP synthase (ATP synthase) and that bacteria need a constant energy production to maintain their homeostasis, we evaluated the effect of two flavones, cirsiliol (tri-hy-droxy-6,7-dimethoxyflavone) and quercetin (3,3,4,5,7-pentahydroxyflavone), on energy production and intracellular ATP content in a methicillin-resistant (MRSA) strain and a methicillin-resistant (MRSE) strain isolated from patients, comparing the results to those obtained by treating the bacteria with oligomycin, a specific ATP synthase F moiety inhibitor. Real-time quantitative ATP synthesis and total ATP content of permeabilized Gram-positive bacteria were assayed by luminometry.

View Article and Find Full Text PDF

Due to the rapid emergence of multi drug resistant (MDR) pathogens against which current antibiotics are no longer functioning, severe infections are becoming practically untreatable. Consequently, the discovery of new classes of effective antimicrobial agents with novel mechanism of action is becoming increasingly urgent. The bioactivity of , an herbaceous plant used for millennia for medicinal and recreational purposes, is mainly due to its content in phytocannabinoids (PCs).

View Article and Find Full Text PDF

Multi-drug resistant bacterial strains (MDR) have become an increasing challenge to our health system, resulting in multiple classical antibiotics being clinically inactive today. As the de-novo development of effective antibiotics is a very costly and time-consuming process, alternative strategies such as the screening of natural and synthetic compound libraries is a simple approach towards finding new lead compounds. We thus report on the antimicrobial evaluation of a small collection of fourteen drug-like compounds featuring indazoles, pyrazoles and pyrazolines as key heterocyclic moieties whose synthesis was achieved in continuous flow mode.

View Article and Find Full Text PDF

Objects touched by patients and healthcare workers in hospitals may harbor pathogens, including multi-drug resistant (MDR) staphylococci, enterococci (VRE), , , and species. Medical devices contaminated by these pathogens may also act as a source of severe and difficult-to-treat human infections, thus becoming a critical public health concern requiring urgent resolutions. To this end, we recently reported the bactericidal effects of a cationic copolymer (CP1).

View Article and Find Full Text PDF

Here, a new two-component hydrogel (CP1OP2-Hgel) was developed, simply by dispersing in water two cationic bactericidal polymers (CP1 and OP2) effective against several multidrug-resistant (MDR) clinical isolates of the most relevant Gram-positive and Gram-negative species. Interestingly, while OP2 acts only as an antibacterial ingredient when in gel, CP1 works as both an antibacterial and a gelling agent. To verify whether it would be worthwhile to use CP1 and OP2 as bioactive ingredients of a new hydrogel supposed for a future treatment of skin infections, dose-dependent cytotoxicity studies with CP1 and OP2 were performed on human fibroblasts for 24 h, before preparing the formulation.

View Article and Find Full Text PDF

Nowadays, new water disinfection materials attract a lot of attention for their cost-saving and ease of application. Nevertheless, the poor durability of the matrices and the loss of physically incorporated or chemically attached antibacterial agents that can occur during water purification processes considerably limit their prolonged use. In this study, a polystyrene-based cationic resin (R4) with intrinsic broad-spectrum antibacterial effects was produced without needing to be enriched with additional antibacterial agents that could detach during use.

View Article and Find Full Text PDF

Several studies have shown that mammalian retinal rod outer segments (OS) are peculiar structures devoid of mitochondria, characterized by ectopic expression of the molecular machinery for oxidative phosphorylation. Such ectopic aerobic metabolism would provide the chemical energy for the phototransduction taking place in the OS. Natural polyphenols include a large variety of molecules having pleiotropic effects, ranging from anti-inflammatory to antioxidant and others.

View Article and Find Full Text PDF

The pyrazole ring represents a widely applied chemical scaffold in medicinal chemistry research and we have observed that the physicochemical and biological features of highly substituted pyrazoles can be successfully improved by their encapsulation in dendrimer nanoparticles (NPs). For the future development of new optimized antibacterial delivery systems, we report the synthesis and biological evaluation of 5-amino functionalized pyrazole library (compounds -). In detail, new derivatives - were differently decorated in C3, C4 and C5 positions.

View Article and Find Full Text PDF

Untreatable infections, growing healthcare costs, and increasing human mortality due to the rising resistance of bacteria to most of the available antibiotics are global phenomena that urgently require the discovery of new and effective antimicrobial agents. Cationic macromolecules, acting as membrane disruptors, are widely studied, and several compounds, including two styrene-based copolymers developed by us (P5 and P7), have proved to possess potent broad-spectrum antibacterial effects, regardless of the resistance profiles of the bacteria. Here, we first reported the synthesis and physicochemical characterization of new cationic nanoparticles (NPs) ( and ), obtained by polymerizing the monomers 4-ammoniummethylstyrene (4-AMSTY) and 4-ammoniumethylstyrene (4-AESTY) hydrochlorides, whose structures were designed using the cationic monomers of P5 and P7 as template compounds.

View Article and Find Full Text PDF

Molecules containing the pyrazole nucleus are widely reported as promising candidates to develop new antimicrobial compounds against multidrug-resistant (MDR) bacteria, where available antibiotics may fail. Recently, aiming at improving the too-high minimum inhibitory concentrations (MICs) of a pyrazole hydrochloride salt (CB1H), CB1H-loaded nanoparticles (CB1H-P7 NPs) were developed using a potent cationic bactericidal macromolecule (P7) as polymer matrix. Here, CB1H-P7 NPs have been successfully tested on several clinical isolates of Gram-positive and Gram-negative species, including relevant MDR strains.

View Article and Find Full Text PDF

The production of olive oil generates olive mill wastewater (OMW) which essentially derives from the processing, treatment and pressing of olives in mills. Traditional milling processes require a quantity of water varying between 40 and 120 L per quintal of pressed olives, generating a considerable amount of wastewater. It is thus necessary to reduce process water and enhance its use to implement the concept of a circular economy.

View Article and Find Full Text PDF

β-lactam antibiotics (BLAs) are crucial molecules among antibacterial drugs, but the increasing emergence of resistance to them, developed by bacteria producing β-lactamase enzymes (BLEs), is becoming one of the major warnings to the global public health. Since only a small number of novel antibiotics are in development, a current clinical approach to limit this phenomenon consists of administering proper combinations of β-lactam antibiotics (BLAs) and β-lactamase inhibitors (BLEsIs). Unfortunately, while few clinically approved BLEsIs are capable of inhibiting most class-A and -C serine β-lactamases (SBLEs) and some carbapenemases of class D, they are unable to inhibit most part of the carbapenem hydrolyzing enzymes of class D and the worrying metallo-β-lactamases (MBLEs) of class B.

View Article and Find Full Text PDF

The antimicrobial potency of the pyrazole nucleus is widely reported these days, and pyrazole derivatives represent excellent candidates for meeting the worldwide need for new antimicrobial compounds against multidrug-resistant (MDR) bacteria. Consequently, 3-(4-chlorophenyl)-5-(4-nitrophenylamino)-1H-pyrazole-4-carbonitrile (CR232), recently reported as a weak antiproliferative agent, was considered to this end. To overcome the CR232 water solubility issue and allow for the determination of reliable minimum inhibitory concentration values (MICs), we initially prepared water-soluble and clinically applicable CR232-loaded nanoparticles (CR232-G5K NPs), as previously reported.

View Article and Find Full Text PDF

Although the antimicrobial potency of the pyrazole nucleus is widely reported, the antimicrobial effects of the 2-(4-bromo-3,5-diphenyl-pyrazol-1-yl)-ethanol (BBB4), found to be active against several other conditions, have never been investigated. Considering the worldwide need for new antimicrobial agents, we thought it noteworthy to assess the minimum inhibitory concentration (MICs) of BBB4 but, due to its scarce water-solubility, unequivocal determinations were tricky. To obtain more reliable MICs and to obtain a substance also potentially applicable in vivo, we recently prepared water-soluble, BBB4-loaded dendrimer nanoparticles (BBB4-G4K NPs), which proved to have physicochemical properties suitable for clinical application.

View Article and Find Full Text PDF

Ursolic acid (UA), a pentacyclic triterpenoid acid found in many medicinal plants and aromas, is known for its antibacterial effects against multi-drug-resistant (MDR) Gram-positive bacteria, which seriously threaten human health. Unfortunately, UA water-insolubility, low bioavailability, and systemic toxicity limit the possibilities of its application in vivo. Consequently, the beneficial activities of UA observed in vitro lose their potential clinical relevance unless water-soluble, not cytotoxic UA formulations are developed.

View Article and Find Full Text PDF

Ursolic acid (UA) is a pentacyclic triterpenoid found in many medicinal plants and aromas endowed with numerous in vitro pharmacological activities, including antibacterial effects. Unfortunately, UA is poorly administered in vivo, due to its water insolubility, low bioavailability, and residual systemic toxicity, thus making urgent the development of water-soluble UA formulations. Dendrimers are nonpareil macromolecules possessing highly controlled size, shape, and architecture.

View Article and Find Full Text PDF

Difficult-to-treat bacterial infections caused by resistant human and plant pathogens severely afflict hospitals, and concern the agri-food sectors. Bacteria from the Pseudomonadaceae family, such as and can be responsible for severe nosocomial infections in humans. is the major cause of dairy and meat spoilage, while can infect a wide range of economically important plant species, including tobacco, kiwi, and tomato.

View Article and Find Full Text PDF

Urinary tract infections are often polymicrobial and are mainly due to uropathogenic (UPEC). We previously demonstrated a link among clinical fluoroquinolone susceptible reducing in vitro urothelial interleukin-8 (CXCL8) induced by K-12, polymicrobial cystitis, and pyuria absence. Here, we evaluated whether fifteen clinical fluoroquinolone susceptible UPEC were able to reduce CXCL8 induced by that had been isolated from the same mixed urines, other than CXCL8 induced by K-12.

View Article and Find Full Text PDF

Numerous foods, plants, and their bioactive constituents (BACs), named nutraceuticals and phytochemicals by experts, have shown many beneficial effects including antifungal, antiviral, anti-inflammatory, antibacterial, antiulcer, anti-cholesterol, hypoglycemic, immunomodulatory, and antioxidant activities. Producers, consumers, and the market of food- and plant-related compounds are increasingly attracted by health-promoting foods and plants, thus requiring a wider and more fruitful exploitation of the healthy properties of their BACs. The demand for new BACs and for the development of novel functional foods and BACs-based food additives is pressing from various sectors.

View Article and Find Full Text PDF

The genus consists of Gram-negative obligate aerobic pathogens, including clinically relevant species, such as , which frequently cause hospital infections, affecting debilitated patients. The growing resistance to antimicrobial therapies shown by is reaching unacceptable levels in clinical practice, and there is growing concern that the serious conditions it causes may soon become incurable. New therapeutic possibilities are, therefore, urgently needed to circumvent this important problem.

View Article and Find Full Text PDF