Publications by authors named "Anna Saran"

Background And Purpose: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue.

View Article and Find Full Text PDF

Objective: To assess the feasibility of implementing a simple point-of-care lung ultrasound (LU) evaluation and reporting protocol in a neonatal intensive care unit (NICU) and its effect on patient management.

Study Design: Retrospective observational study of LU examinations performed in a level III NICU. Each examination was performed according to a standardized protocol.

View Article and Find Full Text PDF

Gastroptosis is a condition in which the stomach is displaced downward and is a condition affects the spontaneous muscle mobility in the stomach. The reason for its current prevalence remains unclear as the medical literature is scarce on the condition in children. In this study, we describe the case of a 17-year-old girl suffering from chronic, position-dependent epigastric pain.

View Article and Find Full Text PDF

Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Exosomes can significantly affect cell behavior during radiation exposure, potentially leading to both damage and protective effects in cells.
  • Comparative analysis of irradiated mice revealed a considerable number of altered proteins and miRNAs in their exosomes, with variations depending on the amount of tissue exposed to radiation.
  • The study suggests that exosomes from irradiated mice, particularly after whole-body irradiation, may help protect against radiation-induced cell death, indicating their potential for future therapeutic uses in treating radiation injuries.
View Article and Find Full Text PDF

The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved.

View Article and Find Full Text PDF

Background: Persistent structural changes of the lungs in anorexia nervosa (AN) patients are rarely described in contemporary medical literature. The objective of our paper is to report a rare case of severe bronchiectasis and inflammatory changes to the lungs resulting from chronic malnutrition in a AN patient.

Case Presentation: We describe a patient with severe inflammatory lung disease caused by malnutrition, resulting in persistent bronchiectasis accompanying AN.

View Article and Find Full Text PDF

Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR.

View Article and Find Full Text PDF

The brain undergoes ionizing radiation (IR) exposure in many clinical situations, particularly during radiotherapy for malignant brain tumors. Cranial radiation therapy is related with the hazard of long-term neurocognitive decline. The detrimental ionizing radiation effects on the brain closely correlate with age at treatment, and younger age associates with harsher deficiencies.

View Article and Find Full Text PDF

Chronic exposure to low-dose ionizing radiation is associated with an increased risk of cardiovascular disease. Alteration in energy metabolism has been suggested to contribute to radiation-induced heart pathology, mitochondrial dysfunction being a hallmark of this disease. The goal of this study was to investigate the regulatory role of acetylation in heart mitochondria in the long-term response to chronic radiation.

View Article and Find Full Text PDF

Background: A better understanding of locally advanced cervical cancer (LACC) is mandatory for further improving the rates of disease control, since a significant proportion of patients still fail to respond or undergo relapse after concurrent chemoradiation treatment (CRT), and survival for these patients has generally remained poor.

Methods: To identify specific markers of CRT response, we compared pretreatment biopsies from LACC patients with pathological complete response (sensitive) with those from patients showing macroscopic residual tumor (resistant) after neoadjuvant CRT, using a proteomic approach integrated with gene expression profiling. The study of the underpinning mechanisms of chemoradiation response was carried out through in vitro models of cervical cancer.

View Article and Find Full Text PDF
Article Synopsis
  • Many genes involved in neuronal development also play a role in adult neurogenesis, and this study focused on the impact of Sonic hedgehog (Shh) signaling on the hippocampus's structure, neurogenesis, and behavior in heterozygous mice.
  • Researchers found that these mice showed significant changes in the dentate gyrus (DG), characterized by structural alterations and disruptions in the progression from neural stem cells to mature neurons.
  • The results indicated a decrease in various cell types and suggested that Shh and Notch signaling pathways interact closely to regulate neurogenesis, influencing both cellular processes and mouse behavior.
View Article and Find Full Text PDF

Medulloblastoma (MB) is the most common pediatric brain tumor, comprising four distinct molecular variants, one of which characterized by activation of the Sonic Hedgehog (SHH) pathway, driving 25-30% of sporadic MB. SHH-dependent MBs arise from granule cell precursors (GCPs), are fatal in 40-70% of cases and radioresistance strongly contributes to poor prognosis and tumor recurrence. Patched1 heterozygous (Ptch1 ) mice, carrying a germ-line heterozygous inactivating mutation in the Ptch1 gene, the Shh receptor and negative regulator of the pathway, are uniquely susceptible to MB development after radiation damage in neonatal cerebellum.

View Article and Find Full Text PDF

Accruing data indicate that radiation-induced consequences resemble pathologies of neurodegenerative diseases such as Alzheimer´s. The aim of this study was to elucidate the effect on hippocampus of chronic low-dose-rate radiation exposure (1 mGy/day or 20 mGy/day) given over 300 days with cumulative doses of 0.3 Gy and 6.

View Article and Find Full Text PDF

It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer.Patched1 heterozygous (Ptch1+/-) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs).

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies have revealed growing interest in non-cancer health effects from low-dose radiation exposure, particularly focusing on cataracts.
  • The research utilized a mouse model with a heterozygous Patched1 (Ptch1) gene to investigate how different radiation doses (2 Gy, 1 Gy, 0.5 Gy) affect lens health.
  • Findings indicated that while 2 Gy exposure caused microscopic changes, no visible cataracts developed, highlighting the need for further studies to clarify the mechanisms and genetic factors involved in radiation-induced cataract formation.
View Article and Find Full Text PDF

Mutations in DNA repair pathways are frequent in human cancers. Hence, gaining insights into the interaction of DNA repair genes is key to development of novel tumor-specific treatment strategies. In this study, we tested the functional relationship in development and oncogenesis between the homologous recombination (HR) factor and , a nuclear enzyme that plays a multifunctional role in DNA damage signaling and repair.

View Article and Find Full Text PDF

Therapeutic irradiation of pediatric and adult patients can profoundly affect adult neurogenesis, and cognitive impairment manifests as a deficit in hippocampal-dependent functions. Age plays a major role in susceptibility to radiation, and younger children are at higher risk of cognitive decay when compared to adults. Cranial irradiation affects hippocampal neurogenesis by induction of DNA damage in neural progenitors, through the disruption of the neurogenic microenvironment, and defective integration of newborn neurons into the neuronal network.

View Article and Find Full Text PDF

Aberrant activation of the Hedgehog (Hh) signaling pathway is implicated in the pathogenesis of many cancers, including medulloblastoma and basal cell carcinoma (BCC). In this study, using neonatally irradiated Ptch1(+/-) mice as a model of Hh-dependent tumors, we investigated the in vivo effects of MK-4101, a novel SMO antagonist, for the treatment of medulloblastoma and BCC. Results clearly demonstrated a robust antitumor activity of MK-4101, achieved through the inhibition of proliferation and induction of extensive apoptosis in tumor cells.

View Article and Find Full Text PDF

There is epidemiological evidence for increased non-cancer mortality, primarily due to circulatory diseases after radiation exposure above 0.5 Sv. We evaluated the effects of chronic low-dose rate versus acute exposures in a murine model of spontaneous atherogenesis.

View Article and Find Full Text PDF

Background: In humans, in utero exposure to ionising radiation results in an increased prevalence of neurological aberrations, such as small head size, mental retardation and decreased IQ levels. Yet, the association between early damaging events and long-term neuronal anomalies remains largely elusive.

Methods: Mice were exposed to different X-ray doses, ranging between 0.

View Article and Find Full Text PDF

Background/purpose Of The Study: Epidemiological evidence suggests that low doses of ionising radiation (≤1.0 Gy) produce persistent alterations in cognition if the exposure occurs at a young age. The mechanisms underlying such alterations are unknown.

View Article and Find Full Text PDF

Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury.

View Article and Find Full Text PDF

Background: The male-to-female sex ratio for medulloblastoma (MB) is approximately 1.5∶1, female gender being also a favorable prognostic factor. This study aimed at evaluating the impact of gender on MB tumorigenesis.

View Article and Find Full Text PDF

N(6)-isopentenyladenosine (i(6)A), a naturally occurring modified nucleoside, inhibits the proliferation of human tumor cell lines in vitro, but its mechanism of action remains unclear. Treatment of MCF7 human breast adenocarcinoma cells with i(6)A or with three synthetic analogs (allyl(6)A, benzyl(6)A, and butyl(6)A) inhibited growth and altered gene expression. About 60% of the genes that were differentially expressed in response to i(6)A treatment were also modulated by the analogs, and pathway enrichment analysis identified the NRF2-mediated oxidative stress response as being significantly modulated by all four compounds.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioneh08gseebo3fs9u6prpop5ma55g1h61p): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once