Publications by authors named "Anna Sandak"

The self-healing bioconcrete, or bioconcrete as concrete containing microorganisms with self-healing capacities, presents a transformative strategy to extend the service life of concrete structures. This technology harnesses the biological capabilities of specific microorganisms, such as bacteria and fungi, which are integral to the material's capacity to autonomously mend cracks, thereby maintaining structural integrity. This review highlights the complex biochemical pathways these organisms utilize to produce healing compounds like calcium carbonate, and how environmental parameters, such as pH, temperature, oxygen, and moisture critically affect the repair efficacy.

View Article and Find Full Text PDF

Understanding the atomic-scale structure of wood microfibrils is essential for establishing fundamental properties in various wood-based research aspects, including moisture impact, wood modification, and pretreatment. In this study, we employed molecular dynamics simulations to investigate the arrangement of wood polymers, including cellulose, hemicellulose, and lignin, with a primary focus on the composition of softwood, specifically Norway Spruce wood. We assessed the accuracy of our molecular dynamics model by comparing it with available experimental data, such as density, Young's modulus, and glass transition temperature, which ensures the reliability of our approach.

View Article and Find Full Text PDF

Recent advancements in wood modification aim to enhance the inherent qualities of this versatile biological material, which includes renewability, ease of processing, and thermal insulation. This study focuses on evaluating the effectiveness of lignin as a protective agent for less durable wood species, namely, and L. The impregnation of wood with three various forms of lignin, such as kraft lignin, acetylated kraft lignin, and lignin nanoparticles, was carried out using the vacuum technique at room conditions.

View Article and Find Full Text PDF

Natural weathering test at two different European climatic zones were conducted to investigate simultaneously both, the fungal colonisation and weathering process of Scots pine wood ( L.). The hypothesis was that the wood performing differently in various climate conditions might affect fungal infestation.

View Article and Find Full Text PDF

Colloidal lignin particles (CLPs) from softwood kraft lignin were evaluated as a multifunctional ingredient to prepare bio-based oil-in-water (O/W) Pickering emulsions. After a preliminary screening, three Pickering emulsions systems were formulated using orange, coconut, and paraffin oils, at varying concentration of CLPs, oil/water ratio, and by applying two-step homogenisation processes (rotor-stator homogenisation followed by ultrasonication). Ultrasonication as a second homogenisation step considerably enhanced the emulsification efficiency, generating emulsions with smaller droplet size and less polydisperse distribution.

View Article and Find Full Text PDF

The morphology control of lignin through particle size reduction to nanoscale seems to be a suitable conversion technology to overcome the intrinsic limitations of its native form to develop a wide range of biomaterials with high performance. Colloidal lignin particles (CLPs) in the range of 150-200 nm were synthesised from hardwood and softwood kraft lignins by the solvent shifting method. The initial molecular features of kraft lignins were evaluated in terms of purity, molecular weight distribution, and chemical functionalities.

View Article and Find Full Text PDF

Heterogeneity of kraft lignin is one of the main limitations for the development of high-performance applications. Therefore, refining lignin using organic solvents is a promising strategy to obtain homogenous fractions with controlled quality in terms of structure and properties. In this work, one-step refining processes for hardwood kraft lignin using nine organic solvents of different chemical nature and polarity were carried out with the aim of investigating and understanding the effect of the type of organic solvent on the quality of resulting fractions.

View Article and Find Full Text PDF

This study aims to characterize and valorize hemp residual biomass by a slow pyrolysis process. The volatile by-products of hemp carbonization were characterized by several methods (TGA, UV-VIS, TLC, Flash Prep-LC, UHPLC, QTOF-MS) to understand the pyrolysis reaction mechanisms and to identify the chemical products produced during the process. The obtained carbon yield was 29%, generating a gaseous stream composed of phenols and furans which was collected in four temperature ranges (F1 at 20-150 °C, F2 at 150-250 °C, F3 at 250-400 °C and F4 at 400-1000 °C).

View Article and Find Full Text PDF

Understanding mechanisms of materials deterioration during service life is fundamental for their confident use in the building sector. This work presents analysis of time series of data related to wood weathering acquired at three scales (molecular, microscopic, macroscopic) with different sensors. By using several complementary techniques, the material description is precise and complete; however, the data provided by multiple equipment are often not directly comparable due to different resolution, sensitivity and/or data format.

View Article and Find Full Text PDF

Density functional theory (DFT) and molecular dynamics (MD) simulations were employed to investigate the interaction of cellulose and lignin with acetic anhydride for explaining the wood modification process. Cellulose was modelled with a cellobiose unit and dibenzodioxocin was used to represent the lignin model. Results obtained from both methods revealed that acetic anhydride interacted substantially more with the cellobiose model than the lignin model.

View Article and Find Full Text PDF

Refining of industrial lignin to produce homogeneous fractions is essential for high-value applications. However, the understanding of key interactions between a variety of solvents with lignin polymer is still uncertain. In this work, single-step fractionation of industrial hardwood kraft lignin (HKL) using organic solvents of different polarities - ethanol, acetone, diethyl ether and hexane - was investigated by combining an experimental and theoretical approach.

View Article and Find Full Text PDF

Portable spectroscopic instruments are an interesting alternative for in-field and on-line measurements. However, the practical implementation of visible-near infrared (VIS-NIR) portable sensors in the forest sector is challenging due to operation in harsh environmental conditions and natural variability of wood itself. The objective of this work was to use spectroscopic methods as an alternative to visual grading of wood quality.

View Article and Find Full Text PDF

The influence of the thermal modification process on wood machinability was investigated with four minor species of low economic importance. A set of representative experimental samples was machined to the form of disks with sharp and dull tools. The resulting surface quality was visually evaluated by a team of experts according to the American standard procedure ASTM D-1666-87.

View Article and Find Full Text PDF

(13)C nuclear magnetic resonance and mid-infrared spectroscopies were used for characterizing changes in the chemical structure of wood polymers (cellulose, hemicellulose and lignin) in relation to the tree growth location. Samples of three provenances in Europe (Finland, Poland and Italy) were selected for studies. The requirement was to use untreated solid wood samples to minimize any manipulation to the nanostructure of native wood.

View Article and Find Full Text PDF