Publications by authors named "Anna Rusek"

The importance of higher order nuclear structure and compartmentalization for the control of the cell life is now indisputable. The genome of higher eukaryotes is organized into definite chromosome territories, and the three-dimensional organization of these territories may be intently related to genomic function, global regulation of gene expression, and even formation of exchange aberrations. In this review, we discuss our current understanding of the chromosome territories phenomenon and briefly describe how genes relocation in three-dimensional arrangement of the genome may influence their functioning.

View Article and Find Full Text PDF

The eukaryotic genome, constituting several billion base pairs, must be contracted to fit within the volume of a nucleus where the diameter is on the scale of μm. The 3D structure and packing of such a long sequence cannot be left to pure chance, as DNA must be efficiently used for its primary roles as a matrix for transcription and replication. In recent years, methods like chromatin conformation capture (including 3C, 4C, Hi-C, ChIA-PET and Multi-ChIA) and optical microscopy have advanced substantially and have shed new light on how eukaryotic genomes are hierarchically organized; first into 10-nm fiber, next into DNA loops, topologically associated domains and finally into interphase or mitotic chromosomes.

View Article and Find Full Text PDF

Cancer is an exceedingly complex disease that is orchestrated and driven by a combination of multiple aberrantly regulated processes. The nature and depth of involvement of individual events vary between cancer types, and in lung cancer, the deregulation of the epigenetic machinery, the tumor microenvironment and the immune system appear to be especially relevant. The contribution of microRNAs to carcinogenesis and cancer progression is well established with many reports and investigations describing the involvement of microRNAs in lung cancer, however most of these studies have concentrated on single microRNA-target relations and have not adequately addressed the complexity of their interactions.

View Article and Find Full Text PDF

Root hairs are tubular outgrowths of specialized epidermal cells called trichoblasts. They affect anchoring plants in soil, the uptake of water and nutrients and are the sites of the interaction between plants and microorganisms. Nineteen root hair mutants of barley representing different stages of root hair development were subjected to detailed morphological and genetic analyses.

View Article and Find Full Text PDF

The prevalence of JAK2V617F tyrosine kinase mutation differs between various variants of myelofibrosis with the higher detection rate for patients with post-polycythemia vera myelofibrosis (post-PV MF; 91%) if compared to primary myelofibrosis (PMF; 45%) and post-essential thrombocythemia myelofibrosis (post-ET MF; 39%). The impact of V617F point mutation and its allele burden on overall survival (OS) and the risk of leukemic transformation (LT) has been the subject of several studies, but the results were ambiguous. Our study included 77 patients with the following variants: 42 patients with PMF (55%), 16 with post-ET MF (21%) and 19 with post-PV MF (24%).

View Article and Find Full Text PDF

Infection thread-dependent invasion of legume roots by rhizobia leads to internalization of bacteria into the plant cells, which is one of the salient features of root nodule symbiosis. We found that two genes, Nap1 (for Nck-associated protein 1) and Pir1 (for 121F-specific p53 inducible RNA), involved in actin rearrangements were essential for infection thread formation and colonization of Lotus japonicus roots by its natural microsymbiont, Mesorhizobium loti. nap1 and pir1 mutants developed an excess of uncolonized nodule primordia, indicating that these two genes were not essential for the initiation of nodule organogenesis per se.

View Article and Find Full Text PDF