Publications by authors named "Anna Rosling"

Background: The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions.

View Article and Find Full Text PDF

Identifying genuine polymorphic variants is a significant challenge in sequence data analysis, although detecting low-frequency variants in sequence data is essential for estimating demographic parameters and investigating genetic processes, such as selection, within populations. Arbuscular mycorrhizal (AM) fungi are multinucleate organisms, in which individual nuclei collectively operate as a population, and the extent of genetic variation across nuclei has long been an area of scientific interest. In this study, we investigated the patterns of polymorphism discovery and the alternate allele frequency distribution by comparing polymorphism discovery in 2 distinct genomic sequence datasets of the AM fungus model species, Rhizophagus irregularis strain DAOM197198.

View Article and Find Full Text PDF

Background: Arbuscular mycorrhizal (AM) fungi are arguably the most important symbionts of plants, offering a range of benefits to their hosts. However, the provisioning of these benefits does not appear to be uniform among AM fungal individuals, with genetic variation between fungal symbionts having a substantial impact on plant performance. Interestingly, genetic variation has also been reported within fungal individuals, which contain millions of haploid nuclei sharing a common cytoplasm.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi are ubiquitous mutualistic symbionts of most terrestrial plants and many complete their lifecycles underground. Whole genome analysis of AM fungi has long been restricted to species and strains that can be maintained under controlled conditions that facilitate collection of biological samples. There is some evidence suggesting that AM fungi can adapt to culture resulting in phenotypic and possibly also genotypic changes in the fungi.

View Article and Find Full Text PDF

Forest fire is known to positively affect bark beetle populations by providing fire-damaged trees with impaired defenses for infestation. Tomicus piniperda, the common pine shoot beetle, breeds and lays eggs under the bark of stressed pine trees and is considered a serious forest pest within its native range. Wood-colonizing fungi have been hypothesized to improve substrate quality and detoxify tree defensive chemistry to indirectly facilitate tree colonization by beetles.

View Article and Find Full Text PDF

Long amplicon metabarcoding has opened the door for phylogenetic analysis of the largely unknown communities of microeukaryotes in soil. Here, we amplified and sequenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grassland soils using PacBio SMRT sequencing. We tested how three different methods for generation of operational taxonomic units (OTUs) effected estimated richness and identified taxa, and how well large-scale ecological patterns associated with shifting environmental conditions were recovered in data from the three methods.

View Article and Find Full Text PDF

Morphological characters and nuclear ribosomal DNA (rDNA) phylogenies have so far been the basis of the current classifications of arbuscular mycorrhizal (AM) fungi. Improved understanding of the evolutionary history of AM fungi requires extensive ortholog sampling and analyses of genome and transcriptome data from a wide range of taxa. To circumvent the need for axenic culturing of AM fungi we gathered and combined genomic data from single nuclei to generate genome assemblies covering seven families of AM fungi.

View Article and Find Full Text PDF

Forests and woodlands in the West African Guineo-Sudanian transition zone contain many tree species that form symbiotic interactions with ectomycorrhizal (ECM) fungi. These fungi facilitate plant growth by increasing nutrient and water uptake and include many fruiting body-forming fungi, including some edible mushrooms. Despite their importance for ecosystem functioning and anthropogenic use, diversity and distribution of ECM fungi is severely under-documented in West Africa.

View Article and Find Full Text PDF

Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet there are methodological challenges in taxonomic and phylogenetic placement of fungi from environmental sequences. To address such challenges, we investigated spatiotemporal structure of a fungal community using soil metabarcoding with four different sequencing strategies: short-amplicon sequencing of the ITS2 region (300-400 bp) with Illumina MiSeq, Ion Torrent Ion S5 and PacBio RS II, all from the same PCR library, as well as long-amplicon sequencing of the full ITS and partial LSU regions (1200-1600 bp) with PacBio RS II. Resulting community structure and diversity depended more on statistical method than sequencing technology.

View Article and Find Full Text PDF

Dimorphism is a widespread feature of tremellalean fungi in general, but a little-studied aspect of the biology of lichen-associated Tremella. We show that Tremella macrobasidiata and Tremella variae have an abundant and widespread yeast stage in their life cycles that occurs in Lecanora lichens. Their sexual filamentous stage is restricted to a specific lichen: T.

View Article and Find Full Text PDF

Due to their submerged and cryptic lifestyle, the vast majority of fungal species are difficult to observe and describe morphologically, and many remain known to science only from sequences detected in environmental samples. The lack of practices to delimit and name most fungal species is a staggering limitation to communication and interpretation of ecology and evolution in kingdom Fungi. Here, we use environmental sequence data as taxonomical evidence and combine phylogenetic and ecological data to generate and test species hypotheses in the class Archaeorhizomycetes (Taphrinomycotina, Ascomycota).

View Article and Find Full Text PDF

Soil fungi link above- and belowground carbon (C) fluxes through their interactions with plants and contribute to C and nutrient dynamics through the production, turnover, and activity of fungal hyphae. Despite their importance to ecosystem processes, estimates of hyphal production and turnover rates are relatively uncommon, especially in temperate hardwood forests. We sequentially harvested hyphal ingrowth bags to quantify the rates of Dikarya (Ascomycota and Basidiomycota) hyphal production and turnover in three hardwood forests in the Midwestern United States, where plots differed in their abundance of arbuscular (AM)- vs.

View Article and Find Full Text PDF

The advent of novel sequencing techniques has unraveled a tremendous diversity on Earth. Genomic data allow us to understand ecology and function of organisms that we would not otherwise know existed. However, major methodological challenges remain, in particular for multicellular organisms with large genomes.

View Article and Find Full Text PDF

In boreal systems, soil profiles typically consist of distinct stratified horizons, with organic layers at the surface overlying deeper mineral horizons providing microhabitat variation along a depth gradient, and vertical stratification of fungal communities along such soil profiles is commonly observed. We studied fungal community structure in a coastal pine forest along a gradient of decreasing influence from the coast. In this system, the vertical stratification pattern of soil microhabitats (defined here as organic, mineral with roots and mineral without roots: O, MR and MN, respectively) is non-uniform; organic horizons are sometimes buried under drifting sand dunes.

View Article and Find Full Text PDF
Article Synopsis
  • Two proposals have been put forward to allow DNA sequences to be used as types for naming certain fungi, which could fundamentally alter the definition of nomenclatural types and lead to various issues in scientific reproducibility and nomenclatural instability.
  • The authors argue against these proposals, suggesting that they would not effectively address the challenges of naming taxa based solely on DNA and propose instead that formulas for naming candidate taxa could be a better solution without changing existing nomenclature rules.
View Article and Find Full Text PDF

Biotic and abiotic conditions in soil pose major constraints on growth and reproductive success of plants. Fungi are important agents in plant soil interactions but the belowground mycobiota associated with plants remains poorly understood. We grew one genotype each from Sweden and Italy of the widely-studied plant model Arabidopsis thaliana.

View Article and Find Full Text PDF

While it is well established that plants associating with arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi cycle carbon (C) and nutrients in distinct ways, we have a limited understanding of whether varying abundance of ECM and AM plants in a stand can provide integrative proxies for key biogeochemical processes. We explored linkages between the relative abundance of AM and ECM trees and microbial functioning in three hardwood forests in southern Indiana, USA. Across each site's 'mycorrhizal gradient', we measured fungal biomass, fungal : bacterial (F : B) ratios, extracellular enzyme activities, soil carbon : nitrogen ratio, and soil pH over a growing season.

View Article and Find Full Text PDF

Although much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring P, we hypothesized that P cycling would differ in stands dominated by trees associated with AM vs ECM fungi. We quantified soil solution P, microbial biomass P, and sequentially extracted inorganic and organic P pools from May to November in plots dominated by trees forming either AM or ECM associations in south-central Indiana, USA.

View Article and Find Full Text PDF

Tedersoo et al. (Research Article, 28 November 2014, p. 1078) present a compelling study regarding patterns of biodiversity of fungi, carried out at a scale unprecedented to date for fungal biogeographical studies.

View Article and Find Full Text PDF

The class Archaeorhizomycetes (Taphrinomycotina, Ascomycota) was introduced to accommodate an ancient lineage of soil-inhabiting fungi found in association with plant roots. Based on environmental sequencing data Archaeorhizomycetes may comprise a significant proportion of the total fungal community in soils. Yet the only species described and cultivated in this class is Archaeorhizomyces finlayi.

View Article and Find Full Text PDF

In Mediterranean-type grassland ecosystems, the timing of rainfall events controls biogeochemical cycles, as well as the phenology and productivity of plants and animals. Here, we investigate the effect of short-term (days) soil environmental conditions on microbial community structure and composition during a natural wetting and drying cycle. Soil samples were collected from a meadow in Northern California at four time points after the first two rainfall events of the rainy season.

View Article and Find Full Text PDF

The aim of this study was to assess belowground occurrence, persistence and possible impact of the biocontrol agent Phlebiopsis gigantea (Fr.) Jülich on soil fungi. Sampling of soil and roots of Picea abies (L.

View Article and Find Full Text PDF

Estimates suggest that only one-tenth of the true fungal diversity has been described. Among numerous fungal lineages known only from environmental DNA sequences, Soil Clone Group 1 is the most ubiquitous. These globally distributed fungi may dominate below-ground fungal communities, but their placement in the fungal tree of life has been uncertain.

View Article and Find Full Text PDF

Brown rot decay removes cellulose and hemicellulose from wood--residual lignin contributing up to 30% of forest soil carbon--and is derived from an ancestral white rot saprotrophy in which both lignin and cellulose are decomposed. Comparative and functional genomics of the "dry rot" fungus Serpula lacrymans, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition in S.

View Article and Find Full Text PDF

Accurate estimates of mycelial exudation in time and space are crucial for the assessment of ectomycorrhizal involvement in biogeochemical processes. Knowledge of exudation from mycelia of ectomycorrhizal fungi is still limited, especially for fungi in symbiosis with a host. Pinus sylvestris seedlings colonized by Hebeloma crustuliniforme were grown in aseptic multicompartment dishes.

View Article and Find Full Text PDF