A significant fraction of Earth's ecosystems undergoes periodic wet-dry alternating transitional states. These globally distributed water-driven transitional ecosystems, such as intermittent rivers and coastal shorelines, have traditionally been studied as two distinct entities, whereas they constitute a single, interconnected meta-ecosystem. This has resulted in a poor conceptual and empirical understanding of water-driven transitional ecosystems.
View Article and Find Full Text PDFInland saline ecosystems suffer multiple stresses (e.g., high radiation, salinity, water scarcity) that may compromise essential ecosystem functions such as organic matter decomposition.
View Article and Find Full Text PDFTo evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects.
View Article and Find Full Text PDFPlastic pollution represents a threat for biological communities and the ecological functions they provide in river ecosystems. In this study, we compared the microbial colonization of two plastics (biodegradable and non-biodegradable) and three natural substrata (leaves, sediment, and rocks) in two study sites of an urbanized watershed differing in their plastic-contamination degree (upstream and downstream). The density and diversity of bacterial, fungal, and algal communities, as well as the extracellular enzymatic activities β-glucosidase (GLU), N-acetyl-glucosaminidase (NAG), and phosphatase (PHO), were analysed in each substrata and site over a 4-week colonization experiment.
View Article and Find Full Text PDFStudies of litter decomposition in salt marshes have been mainly focused on the measurement of decomposition rates, being litter quality, the type of microbial decomposers and their extracellular enzyme activity, rarely considered. Moreover, most of these studies have been conducted in Poaceae and Cyperaceae species, being scarce the literature on Chenopodiaceae species, which are abundant in Mediterranean salt marshes. Here we analyse the litter decomposition process of two Chenopodiaceae (Sarcocornia fruticosa and Halimione portulacoides) and one Poaceae (Elytrigia atherica) species, belonging S.
View Article and Find Full Text PDFFEMS Microbiol Ecol
September 2020
The sensitivity and spatial recovery of river sediment biofilms along 1 km after the input of two wastewater treatment plants (WWTPs) located in two river reaches with different degrees of anthropogenic influence were investigated. First, at the upper reach, we observed an inhibition of some microbial functions (microbial respiration and extracellular enzyme activities) and strong shifts in bacterial community composition (16S rRNA gene), whereas an increase in microbial biomass and activity and less pronounced effect on microbial diversity and community composition were seen at the lower reach. Second, at the lower reach we observed a quick spatial recovery (around 200 m downstream of the effluent) as most of the functions and community composition were similar to those from reference sites.
View Article and Find Full Text PDFMicrobes inhabiting intermittent streambeds are responsible for controlling and developing many biogeochemical processes essential for the ecosystem functions. Although streambed microbiota is adapted to intermittency the intensification of water scarcity and prolonged dry periods may jeopardise their capacity to cope with hydrological changes. This study aims to evaluate whether, and to what extent, the duration of dry periods affects streambed microbial density, diversity, composition (16S rRNA gene diversity) and functions (extracellular enzyme activities and respiration).
View Article and Find Full Text PDFBiofilm growth is a significant source of contamination in the food industry. Enzymes are considered green countermeasures against biofilm formation in the food industry owing to their biodegradability and low toxicity. In this study, the synergistic effect of enzymes was studied against biofilm cleaning from hard surfaces.
View Article and Find Full Text PDFThis article describes a brief account written by a girl treated with chemotherapy and surgery for an ovarian germ cell tumor. The brief novel was conceived in the context of the Youth Project of Milan, dedicated to helping adolescent and young adult cancer patients socialize and express themselves through group activities that focus on art and creativity. It describes the scenery of a new galaxy and is replete with images and metaphors that recall the experience of receiving anticancer treatment, touching on emotional themes including desire, isolation, fear, and hope.
View Article and Find Full Text PDFIn the Arctic, climate changes contribute to enhanced mobilization of organic matter in streams. Microbial extracellular enzymes are important mediators of stream organic matter processing, but limited information is available on enzyme processes in this remote area. Here, we studied the variability of microbial extracellular enzyme activity in high-Arctic fluvial biofilms.
View Article and Find Full Text PDFBackground: The aim of this study was to compare OTSC® proctology and fistulectomy with primary sphincter reconstruction results as treatment strategies for anorectal low trans-sphincteric fistula.
Methods: Between February 2012 and March 2013, patients affected by trans-sphincteric anal fistula were consecutively enrolled in the trial. Patients were randomized to receive fistulectomy with primary sphincter reconstruction or OTSC® Proctology.
Flow cytometry is suitable to discriminate and quantify aquatic microbial cells within a spectrum of fluorescence and light scatter signals. Using fixed gating and operational settings, we developed a finite distribution mixture model, followed by the Voronoi tessellation, to resolve bivariate cytometric profiles into cohesive subgroups of events. This procedure was applied to outline recurrent patterns and quantitative changes of the aquatic microbial community along a river hydrologic continuum.
View Article and Find Full Text PDFDrought frequency and intensity in some temperate regions are forecasted to increase under the ongoing global change, which might expose permanent streams to intermittence and have severe repercussions on stream communities and ecosystem processes. In this study, we investigated the effect of drought duration on microbial decomposition of Populus nigra leaf litter in a temperate permanent stream (Oliveira, NW Portugal). Specifically, we measured the response of the structural (assemblage composition, bacterial and fungal biomass) and functional (leaf litter decomposition, extracellular enzyme activities (EEA), and fungal sporulation) parameters of fungal and bacterial communities on leaf litter exposed to emersion during different time periods (7, 14 and 21d).
View Article and Find Full Text PDFA consequence of drought in streams is the emersion of decomposing leaf litter, which may alter organic matter recycling. We assessed the effects of emersion on decomposition of black poplar leaves and associated microbes (microbial biomass, extracellular enzyme activities and microbial diversity) in two streams with distinct characteristics, in particular nutrients, temperature and oxygen levels. Leaf decomposition rates, fungal biomass and extracellular enzyme activities were lower in the most impacted stream (high nutrients and temperature, low oxygen).
View Article and Find Full Text PDFUnderstanding DOM transport and reactivity in rivers is essential to having a complete picture of the global carbon cycle. In this study, we explore the effects of hydrological variability and downstream transport on dissolved organic matter (DOM) dynamics in a Mediterranean river. We sampled the main stem of the river Tordera from the source to the sea, over a range of fifteen hydrological conditions including extreme events (flood and drought).
View Article and Find Full Text PDFDiel temperature patterns are changing because of global warming, with higher temperatures being predicted to be more pronounced at night. Biological reactions are temperature dependent, with some occurring only during the daylight hours (e.g.
View Article and Find Full Text PDFBiofilms are a key component in the nutrient removal from the water column. However, nutrient uptake by biofilms may be hampered by the occurrence of pollutants or other stressors. This study aimed: (i) to investigate the biofilm phosphorus (P) uptake capacity as a relevant process for the maintenance of fluvial water quality and (ii) to explore the sensitivity of this process to different chemical and environmental stressors.
View Article and Find Full Text PDFMicroorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags.
View Article and Find Full Text PDFStreams and rivers form dense networks, shape the Earth's surface and, in their sediments, provide an immensely large surface area for microbial growth. Biofilms dominate microbial life in streams and rivers, drive crucial ecosystem processes and contribute substantially to global biogeochemical fluxes. In turn, water flow and related deliveries of nutrients and organic matter to biofilms constitute major constraints on microbial life.
View Article and Find Full Text PDFThe toxicity of chemicals in the environment is influenced by many factors, such as the adsorption to mineral particles, active biological surfaces, biotransformation and/or nutrient concentration. In the present study, a simplified fluvial system including fish, periphyton and sediment was used to investigate the fate and effects of environmentally realistic concentration of arsenic (As) on biofilm growth and nutrient cycling. Total dissolved arsenic concentration decreased exponentially from 120μg/L to 28.
View Article and Find Full Text PDFAs a result of climate change, streams are warming and their runoff has been decreasing in most temperate areas. These changes can affect consumers directly by increasing their metabolic rates and modifying their physiology and indirectly by changing the quality of the resources on which organisms depend. In this study, a common stream detritivore (Echinogammarus berilloni Catta) was reared at two temperatures (15 and 20°C) and fed Populus nigra L.
View Article and Find Full Text PDFThe understanding of ecosystem responses to changing environmental conditions is becoming increasingly relevant in the context of global warming. Microbial biofilm communities in streams play a key role in organic matter cycling which might be modulated by shifts in flowing water temperature. In this study, we performed an experiment at the Candal stream (Portugal) longitudinally divided into two reaches: a control half and an experimental half where water temperature was 3 °C above that of the basal stream water.
View Article and Find Full Text PDFBiofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old).
View Article and Find Full Text PDF