Publications by authors named "Anna Reznichenko"

Background: The Human Protein Atlas, with more than 10 million immunohistochemical images showing tissue- and cell-specific protein expression levels and subcellular localization information, is widely used in kidney research. The Human Protein Atlas contains comprehensive data on multi-tissue transcript and protein abundance, allowing for comparisons across tissues. However, while visual and intuitive to interpret, immunohistochemistry is limited by its semi-quantitative nature.

View Article and Find Full Text PDF

Current classification of chronic kidney disease (CKD) into stages using indirect systemic measures (estimated glomerular filtration rate (eGFR) and albuminuria) is agnostic to the heterogeneity of underlying molecular processes in the kidney thereby limiting precision medicine approaches. To generate a novel CKD categorization that directly reflects within kidney disease drivers we analyzed publicly available transcriptomic data from kidney biopsy tissue. A Self-Organizing Maps unsupervised artificial neural network machine-learning algorithm was used to stratify a total of 369 patients with CKD and 46 living kidney donors as healthy controls.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) have established the contribution of common and low-frequency variants to metabolic blood measurements in the UK Biobank (UKB). To complement existing GWAS findings, we assessed the contribution of rare protein-coding variants in relation to 355 metabolic blood measurements-including 325 predominantly lipid-related nuclear magnetic resonance (NMR)-derived blood metabolite measurements (Nightingale Health Plc) and 30 clinical blood biomarkers-using 412,393 exome sequences from four genetically diverse ancestries in the UKB. Gene-level collapsing analyses were conducted to evaluate a diverse range of rare-variant architectures for the metabolic blood measurements.

View Article and Find Full Text PDF

Kidney disease is a complex disease with several different etiologies and underlying associated pathophysiology. This is reflected by the lack of effective treatment therapies in chronic kidney disease (CKD) that stop disease progression. However, novel strategies, recent scientific breakthroughs, and technological advances have revealed new possibilities for finding novel disease drivers in CKD.

View Article and Find Full Text PDF

Large-scale phenome-wide association studies performed using densely-phenotyped cohorts such as the UK Biobank (UKB), reveal many statistically robust gene-phenotype relationships for both clinical and continuous traits. Here, we present Gene-SCOUT, a tool used to identify genes with similar continuous trait fingerprints to a gene of interest. A fingerprint reflects the continuous traits identified to be statistically associated with a gene of interest based on multiple underlying rare variant genetic architectures.

View Article and Find Full Text PDF

Background: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease, affecting ∼30% of the rapidly growing diabetic population, and strongly associated with cardiovascular risk. Despite this, the molecular mechanisms of disease remain unknown.

Methods: RNA sequencing (RNAseq) was performed on paired, micro-dissected glomerular and tubulointerstitial tissue from patients diagnosed with DN [n = 19, 15 males, median (range) age: 61 (30-85) years, chronic kidney disease stages 1-4] and living kidney donors [n = 20, 12 males, median (range) age: 56 (30-70) years].

View Article and Find Full Text PDF

The deletion of T-type Ca3.1 channels may reduce high-fat diet (HFD)-induced weight gain, which correlates positively with obesity and endothelial dysfunction. Therefore, experiments were designed to study the involvement of T-type Ca3.

View Article and Find Full Text PDF

Background: Serum urea level is a heritable trait, commonly used as a diagnostic marker for kidney function. Genome-wide association studies (GWAS) in East-Asian populations identified a number of genetic loci related to serum urea, however there is a paucity of data for European populations.

Methods: We performed a two-stage meta-analysis of GWASs on serum urea in 13,312 participants, with independent replication in 7,379 participants of European ancestry.

View Article and Find Full Text PDF

Background: Few studies have investigated the blood proteome of inflammatory bowel disease (IBD). We characterized the serum abundance of proteins encoded at 163 known IBD risk loci and tested these proteins for their biomarker discovery potential.

Methods: Based on the Human Protein Atlas (HPA) antibody availability, 218 proteins from genes mapping at 163 IBD risk loci were selected.

View Article and Find Full Text PDF

Development of physiologically relevant cellular models with strong translatability to human pathophysiology is critical for identification and validation of novel therapeutic targets. Herein we describe a detailed protocol for generation of an advanced 3-dimensional kidney cellular model using induced pluripotent stem cells, where differentiation and maturation of kidney progenitors and podocytes can be monitored in live cells due to CRISPR/Cas9-mediated fluorescent tagging of kidney lineage markers (SIX2 and NPHS1). Utilizing these cell lines, we have refined the previously published procedures to generate a new, higher throughput protocol suitable for drug discovery.

View Article and Find Full Text PDF

Mesangial matrix expansion is an important process in the initiation of chronic kidney disease, yet the genetic factors driving its development are unknown. Our previous studies have implicated Far2 as a candidate gene associated with differences in mesangial matrix expansion between mouse inbred strains. Consistent with the hypothesis that increased expression of Far2 leads to mesangial matrix expansion through increased production of platelet-activating factor precursors, we show that FAR2 is capable of mediating de novo platelet-activating factor synthesis in vitro and driven by the transcription factor NKX3.

View Article and Find Full Text PDF

Objectives: This review article describes the role of neutrophils in mucosal injury and the resulting crypt abscesses characteristic of ulcerative colitis. We also review selected biomarkers for monitoring neutrophil presence and activity in the mucosa as well as their potential as therapeutic targets.

Material: We have collated and selectively reviewed data on the most prominent well-established and emerging neutrophil-related biomarkers and potential therapeutic targets (calprotectin, lactoferrin, CXCR1, CXCR2, MMP-9, NGAL, elafin, HNE, pANCAs, MPO, CD16, CD177, CD64, HNPs, SLPI and PTX3) in ulcerative colitis.

View Article and Find Full Text PDF

Platelet-activating factor (PAF) is a powerful proinflammatory mediator that displays an exceedingly diverse spectrum of biological effects. Importantly, PAF is shown to participate in a broad range of pathologic conditions. This review focuses on the role that PAF plays specifically in the pathophysiology of the kidney, the organ that is both a source and a target of PAF.

View Article and Find Full Text PDF

Objective: IBS shows genetic predisposition, but adequately powered gene-hunting efforts have been scarce so far. We sought to identify true IBS genetic risk factors by means of genome-wide association (GWA) and independent replication studies.

Design: We conducted a GWA study (GWAS) of IBS in a general population sample of 11,326 Swedish twins.

View Article and Find Full Text PDF

Genome-wide association studies reported SLC22A2 variants to be associated with serum creatinine. As SLC22A2 encodes the organic cation transporter 2 (OCT2), the association might be due to an effect on tubular creatinine handling. To test this hypothesis we studied the association of SLC22A2 polymorphisms with phenotypes of net tubular creatinine secretion: fractional creatinine excretion (FEcreat) and bias of estimated glomerular filtration rate (eGFR).

View Article and Find Full Text PDF

Background: In recent genetic association studies, common variants including rs12917707 in the UMOD locus have shown strong evidence of association with eGFR, prevalent and incident chronic kidney disease and uromodulin urinary concentration in general population cohorts. The association of rs12917707 with end-stage renal disease (ESRD) in a recent case-control study was only nominally significant.

Methods: To investigate whether rs12917707 associates with ESRD, graft failure (GF) and urinary uromodulin levels in an independent cohort, we genotyped 1142 ESRD patients receiving a renal transplantation and 1184 kidney donors as controls.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) is a complex disorder. As genome-wide association studies identified cubilin gene CUBN as a locus for albuminuria, and urinary protein loss is a risk factor for progressive CKD, we tested the hypothesis that common genetic variants in CUBN are associated with end-stage renal disease (ESRD) and proteinuria. First, a total of 1142 patients with ESRD, admitted for renal transplantation, and 1186 donors were genotyped for SNPs rs7918972 and rs1801239 (case-control study).

View Article and Find Full Text PDF

In kidney transplantation, complement activation was found to be induced by donor brain death, renal ischemia-reperfusion injury and allograft rejection. There are three known pathways of complement activation: the classical, lectin and the alternative pathway. The lectin complement pathway can be activated upon pattern recognition by mannan binding lectin (MBL) or ficolins (FCN).

View Article and Find Full Text PDF

Background: Urinary uromodulin (UMOD) predicts renal prognosis in native kidneys, but data are conflicting. We investigated its prognostic impact for graft failure (GF) in renal transplant recipients (RTR; n = 600).

Methods: UMOD concentration was measured cross-sectionally in RTR at 6.

View Article and Find Full Text PDF