In this community-led pilot study we sought to investigate the utility of expanded per- and polyfluoroalkyl substances (PFAS) testing for drinking water, using a targeted analysis for 70 PFAS and the Total Oxidizable Precursor (TOP) Assay which can indicate the presence of precursor PFAS. PFAS were detected in 30 out of 44 drinking water samples across 16 states; 15 samples would exceed US EPA's proposed maximum contaminant levels for six PFAS. Twenty-six unique PFAS were identified, including 12 not covered by either US EPA Methods 537.
View Article and Find Full Text PDFChemicals have improved the functionality and convenience of industrial and consumer products, but sometimes at the expense of human or ecological health. Existing regulatory systems have proven to be inadequate for assessing and managing the tens of thousands of chemicals in commerce. A different approach is urgently needed to minimize ongoing production, use, and exposures to hazardous chemicals.
View Article and Find Full Text PDFBackground: PFAS (per-and polyfluoroalkyl substances) are a large class of synthetic chemicals widely used in consumer products and industrial processes. The scientific literature on PFAS has increased dramatically in the last decade. Many stakeholders, including regulators, scientists, non-governmental organizations, and concerned individuals could benefit from an efficient way to access the health and toxicological literature related to PFAS.
View Article and Find Full Text PDFThis commentary presents a scientific basis for managing as one chemical class the thousands of chemicals known as PFAS (per- and polyfluoroalkyl substances). The class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors; fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach is presented in relation to their physicochemical, environmental, and toxicological properties.
View Article and Find Full Text PDFThe coordination of cell movements across spatio-temporal scales ensures precise positioning of organs during vertebrate gastrulation. Mechanisms governing such morphogenetic movements have been studied only within a local region, a single germlayer or in whole embryos without cell identity. Scale-bridging imaging and automated analysis of cell dynamics are needed for a deeper understanding of tissue formation during gastrulation.
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) confer waterproof, greaseproof, and non-stick properties when added to consumer products. They are also used for industrial purposes including in aqueous film forming foams for firefighting. PFAS are ubiquitous in the environment, are widely detected in human biomonitoring studies, and are of growing regulatory concern across federal, state, and local governments.
View Article and Find Full Text PDFHere, we describe an optogenetic gene expression system optimized for use in zebrafish. This system overcomes the limitations of current inducible expression systems by enabling robust spatial and temporal regulation of gene expression in living organisms. Because existing optogenetic systems show toxicity in zebrafish, we re-engineered the blue-light-activated EL222 system for minimal toxicity while exhibiting a large range of induction, fine spatial precision and rapid kinetics.
View Article and Find Full Text PDFWe demonstrate the utility of the phytochrome system to rapidly and reversibly recruit proteins to specific subcellular regions within specific cells in a living vertebrate embryo. Light-induced heterodimerization using the phytochrome system has previously been used as a powerful tool to dissect signaling pathways for single cells in culture but has not previously been used to reversibly manipulate the precise subcellular location of proteins in multicellular organisms. Here we report the experimental conditions necessary to use this system to manipulate proteins in vivo.
View Article and Find Full Text PDFInfrared fluorescent proteins (IFPs) provide an additional color to GFP and its homologs in protein labeling. Drawing on structural analysis of the dimer interface, we identified a bacteriophytochrome in the sequence database that is monomeric in truncated form and engineered it into a naturally monomeric IFP (mIFP). We demonstrate that mIFP correctly labels proteins in live cells, Drosophila and zebrafish.
View Article and Find Full Text PDFOptogenetic gene expression systems can control transcription with spatial and temporal detail unequaled with traditional inducible promoter systems. However, current eukaryotic light-gated transcription systems are limited by toxicity, dynamic range or slow activation and deactivation. Here we present an optogenetic gene expression system that addresses these shortcomings and demonstrate its broad utility.
View Article and Find Full Text PDFWe report the sequence and analysis of the 814-megabase genome of the sea urchin Strongylocentrotus purpuratus, a model for developmental and systems biology. The sequencing strategy combined whole-genome shotgun and bacterial artificial chromosome (BAC) sequences. This use of BAC clones, aided by a pooling strategy, overcame difficulties associated with high heterozygosity of the genome.
View Article and Find Full Text PDFThe sea urchin egg has a rich history of contributions to our understanding of fundamental questions of egg activation at fertilization. Within seconds of sperm-egg interaction, calcium is released from the egg endoplasmic reticulum, launching the zygote into the mitotic cell cycle and the developmental program. The sequence of the Strongylocentrotus purpuratus genome offers unique opportunities to apply functional genomic and proteomic approaches to investigate the repertoire and regulation of Ca(2+) signaling and homeostasis modules present in the egg and zygote.
View Article and Find Full Text PDF