Publications by authors named "Anna Rajab"

Article Synopsis
  • Research shows that a mutation in the SWIP subunit of the WASH complex is linked to human intellectual disability and affects endosomal functions in brain cells.
  • A mouse model with this mutation reveals that it destabilizes the WASH complex, leading to disruptions in the endosomal and lysosomal pathways and indicators of neurodegeneration.
  • The study finds that SWIP mutations not only impair cognitive functions but also cause progressive motor deficits, which are also observed in affected humans, highlighting the critical role of endo-lysosomal processes in these impairments.
View Article and Find Full Text PDF
Article Synopsis
  • The Arab population, consisting of over 420 million people, exhibits significant genetic diversity and a notable prevalence of genetic diseases, especially autosomal recessive disorders.
  • There is currently a lack of comprehensive databases documenting clinically relevant genetic variants from this population, which hinders accurate diagnosis and disease prevention.
  • To address this issue, the DALIA database has been created to compile genetic variants associated with diseases in the Arab population, serving as a valuable resource for clinical interpretation and genetic research.
View Article and Find Full Text PDF
Article Synopsis
  • The exocyst complex is crucial for various cellular processes, including vesicle fusion and cell movement, but its connection to human genetic disorders is not well understood.
  • Researchers used mapping and sequencing methods on families with brain disorders to find that mutations in EXOC7 and EXOC8 are linked to cerebral cortex development issues.
  • Their findings indicate that disruptions in the exocyst pathway can lead to serious brain disorders, underlining its importance in normal brain development.
View Article and Find Full Text PDF

Next-generation sequencing (NGS) has been instrumental in solving the genetic basis of rare inherited diseases, especially neurodevelopmental syndromes. However, functional workup is essential for precise phenotype definition and to understand the underlying disease mechanisms. Using whole exome (WES) and whole genome sequencing (WGS) in four independent families with hypotonia, neurodevelopmental delay, facial dysmorphism, loss of white matter, and thinning of the corpus callosum, we identified four previously unreported homozygous truncating PPP1R21 alleles: c.

View Article and Find Full Text PDF

PRUNE is a member of the DHH (Asp-His-His) phosphoesterase protein superfamily of molecules important for cell motility, and implicated in cancer progression. Here we investigated multiple families from Oman, India, Iran and Italy with individuals affected by a new autosomal recessive neurodevelopmental and degenerative disorder in which the cardinal features include primary microcephaly and profound global developmental delay. Our genetic studies identified biallelic mutations of PRUNE1 as responsible.

View Article and Find Full Text PDF

Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate.

View Article and Find Full Text PDF

The aim of this study was to evaluate cytogenetic findings in Omani patients who had been referred for suspicion of sex chromosome abnormalities that resulted in different clinical disorders. Furthermore, it sought to examine the frequency of chromosomal anomalies in these patients and to compare the obtained results with those reported elsewhere. Cytogenetic analysis was performed on 1232 cases with variant characteristics of sexual development disorders who had been referred to the cytogenetic department, National Genetic Centre, Ministry of Health, from different hospitals in the Sultanate of Oman between 1999 and 2014.

View Article and Find Full Text PDF

The Sultanate of Oman is a rapidly developing Muslim country with well-organized government-funded health care services, and expanding medical genetic facilities. The preservation of tribal structures within the Omani population coupled with geographical isolation has produced unique patterns of rare mutations. In order to provide diagnosticians and researchers with access to an up-to-date resource that will assist them in their daily practice we collated and analyzed all of the Mendelian disease-associated mutations identified in the Omani population.

View Article and Find Full Text PDF

Genetic changes associated with acute lymphoblastic leukemia (ALL) provide very important diagnostic and prognostic information with a direct impact on patient management. Detection of chromosome abnormalities by conventional cytogenetics combined with fluorescence in situ hybridization (FISH) play a very significant role in assessing risk stratification. Identification of specific chromosome abnormalities has led to the recognition of genetic subgroups based on reciprocal translocations, deletions and modal number in B or T-cell ALL.

View Article and Find Full Text PDF

Background: Various genetic defects cause autism associated with intellectual disability and epilepsy. Here, we set out to identify the genetic defect in a consanguineous Omani family with three affected children in whom mutations in known candidate genes had been excluded beforehand.

Methods: For mutation screening, we combined autozygosity mapping and whole exome sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Recent discoveries highlight that many cases of microcephaly remain unexplained, indicating undiscovered syndromes and genes.
  • Mutations in the PYCR2 gene, linked to a specific syndrome, were found through advanced genetic mapping and sequencing in two consanguineous families, affecting brain development.
  • Research revealed that the PYCR2 mutations lead to significant cellular changes, impacting mitochondrial function and underscoring PYCR2's crucial role in brain development, distinguishing it from similar conditions caused by related genes.
View Article and Find Full Text PDF

Objective: To identify the genetic cause of pontocerebellar hypoplasia type III (PCH3).

Methods: We studied the original reported pedigree of PCH3 and performed genetic analysis including genome-wide single nucleotide polymorphism genotyping, linkage analysis, whole-exome sequencing, and Sanger sequencing. Human fetal brain RNA sequencing data were then analyzed for the identified candidate gene.

View Article and Find Full Text PDF

Orofaciodigital syndrome (OFD) is a recognized clinical entity with core defining features in the mouth, face, and digits, in addition to various other features that have been proposed to define distinct subtypes. The three genes linked to OFD-OFD1, TMEM216, and TCTN3-play a role in ciliary biology, a finding consistent with the clinical overlap between OFD and other ciliopathies. Most autosomal-recessive cases of OFD, however, remain undefined genetically.

View Article and Find Full Text PDF

The Sultanate of Oman is a rapidly developing Muslim country with well-organised government-funded health care services, including primary, secondary and tertiary, and rapidly expanding medical genetic facilities. At the present time, the Omani population is characterised by a rapid rate of growth, large family size, consanguineous marriages, and the presence of genetic isolates. The preservation of a tribal structure in the community coupled with traditional isolation has produced unique and favourable circumstances for building genealogical records and the study of genetic disease.

View Article and Find Full Text PDF

Autosomal recessive osteopetrosis (ARO, MIM 259700) is a genetically heterogeneous rare skeletal disorder characterized by failure of osteoclast resorption leading to pathologically increased bone density, bone marrow failure, and fractures. In the neuronopathic form neurological complications are especially severe and progressive. An early identification of the underlying genetic defect is imperative for assessment of prognosis and treatment by hematopoietic stem cell transplantation.

View Article and Find Full Text PDF

Neighboring genes are often coordinately expressed within cis-regulatory modules, but evidence that nonparalogous genes share functions in mammals is lacking. Here, we report that mutation of either TMEM138 or TMEM216 causes a phenotypically indistinguishable human ciliopathy, Joubert syndrome. Despite a lack of sequence homology, the genes are aligned in a head-to-tail configuration and joined by chromosomal rearrangement at the amphibian-to-reptile evolutionary transition.

View Article and Find Full Text PDF

Background: Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype.

View Article and Find Full Text PDF

Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy.

View Article and Find Full Text PDF

High-throughput sequencing has greatly facilitated the elucidation of genetic disorders, but compared with X-linked and autosomal dominant diseases, the search for genetic defects underlying autosomal recessive diseases still lags behind. In a large consanguineous family with autosomal recessive intellectual disability (ARID), we have combined homozygosity mapping, targeted exon enrichment and high-throughput sequencing to identify the underlying gene defect. After appropriate single-nucleotide polymorphism filtering, only two molecular changes remained, including a non-synonymous sequence change in the SWIP [Strumpellin and WASH (Wiskott-Aldrich syndrome protein and scar homolog)-interacting protein] gene, a member of the recently discovered WASH complex, which is involved in actin polymerization and multiple endosomal transport processes.

View Article and Find Full Text PDF

The Lamin B receptor (LBR) is a pivotal architectural protein in the nuclear envelope. Mutations in the Lamin B receptor lead to nuclear hyposegmentation (Pelger-Huët anomaly). We have exactly quantified the nuclear lobulation in neutrophils from individuals with 0, 1, 2 and 3 functional copies of the lamin B receptor gene and analyzed the effect of different mutation types.

View Article and Find Full Text PDF

Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR).

View Article and Find Full Text PDF

Objective: We sought to explore the genetic and molecular causes of Troyer syndrome, one of several complicated hereditary spastic paraplegias (HSPs). Troyer syndrome had been thought to be restricted to the Amish; however, we identified 2 Omani families with HSP, short stature, dysarthria and developmental delay-core features of Troyer syndrome-and a novel mutation in the SPG20 gene, which is also mutated in the Amish. In addition, we analyzed SPG20 expression throughout development to infer how disruption of this gene might generate the constellation of developmental and degenerative Troyer syndrome phenotypes.

View Article and Find Full Text PDF

Sickle cell disease is known to be very common in the Omani population, although data are limited concerning beta-thalassemia (beta-thal). We report the molecular background of 87 unrelated patients from the Sultanate of Oman, diagnosed with beta-thal major (beta-TM), beta-thal intermedia (beta-TI) or minor. Diagnosis was based on clinical and hematological data and confirmed by molecular analysis.

View Article and Find Full Text PDF