Aims: Characterizing cannabinoid receptors (CBRs) expressed in Ewing sarcoma (EWS) cell lines as potential targets for anti-cancer drug development.
Main Methods: CBR affinity and function were examined by competitive binding and G-protein activation, respectively. Cannabinoid-mediated cytotoxicity and cell viability were evaluated by LDH, and trypan blue assays, respectively.
In 2020, nearly one-third of new drugs on the global market were synthetic cannabinoids including the drug of abuse -(1-adamantyl)-1-(5-pentyl)-1-indazole-3-carboxamide (5F-APINACA, 5F-AKB48). Knowledge of 5F-APINACA metabolism provides a critical mechanistic basis to interpret and predict abuser outcomes. Prior qualitative studies identified which metabolic processes occur but not the order and extent of them and often relied on problematic "semi-quantitative" mass spectroscopic (MS) approaches.
View Article and Find Full Text PDFAKB48 and its fluorinated derivative 5F-AKB48 are synthetic cannabinoids (SCs) which have caused hospitalizations and deaths in human users. Abuse of SCs is dangerous because users may mistake them for natural cannabis, which is generally considered to be unlikely to elicit adverse effects. The present studies were designed to investigate the in vitro oxidative metabolism of 5F-AKB48 by human microsomal fractions from different organs and sexes as well as recombinant human cytochrome P450s (P450s).
View Article and Find Full Text PDFSynthetic cannabinoids (SCBs), designer drugs marketed as legal alternatives to marijuana, act as ligands to cannabinoid receptors; however, they have increased binding affinity and potency, resulting in toxicity symptoms such as cardiovascular incidents, seizures, and potentially death. N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a third generation SCB. When incubated with hepatocytes, it undergoes oxidation, hydrolysis, and glucuronidation, resulting in 29 metabolites, with monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21) being the predominant metabolites.
View Article and Find Full Text PDFRecently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized.
View Article and Find Full Text PDFConvulsant effects of abused synthetic cannabinoid (SCB) drugs have been reported in humans and laboratory animals, but the mechanism of these effects is not known. We compared convulsant effects of partial CB1R agonist ∆-tetrahydrocannabinol (THC), full CB1R agonist SCBs JWH-018 and 5F-AB-PINACA, and classic chemical convulsant pentylenetetrazol (PTZ) using an observational rating scale in mice. THC did not elicit convulsions, but both SCBs did so as effectively as and more potently than PTZ.
View Article and Find Full Text PDFFront Pharmacol
September 2018
Recreational use of marijuana is associated with few adverse effects, but abuse of synthetic cannabinoids (SCBs) can result in anxiety, psychosis, chest pain, seizures and death. To potentially explain higher toxicity associated with SCB use, we hypothesized that AB-PINACA, a common second generation SCB, exhibits atypical pharmacodynamic properties at CB1 cannabinoid receptors (CB1Rs) and/or a distinct metabolic profile when compared to Δ-tetrahydrocannabinol (Δ-THC), the principal psychoactive cannabinoid present in marijuana. Liquid chromatography tandem mass spectrometry (LC/MS) identified AB-PINACA and monohydroxy metabolite(s) as primary phase I metabolites (4OH-AB-PINACA and/or 5OH-AB-PINACA) in human urine and serum obtained from forensic samples.
View Article and Find Full Text PDFSynthetic cannabinoids (SCBs), synonymous with 'K2', 'Spice' or 'synthetic marijuana', are psychoactive drugs of abuse that frequently result in clinical effects and toxicity more severe than those classically associated with Δ-tetrahydrocannabinol such as extreme agitation, hallucinations, supraventricular tachycardia, syncope, and seizures. JWH-018 is one of the earliest compounds identified in various SCB products, and our laboratory previously demonstrated that JWH-018 undergoes extensive metabolism by cytochromes P450 (P450), binds to, and activates cannabinoid receptors (CBRs). The major enzyme involved in the metabolism of JWH-018 is CYP2C9, a highly polymorphic enzyme found largely in the intestines and liver, with *1 being designated as the wild type, and *2 and *3 as the two most common variants.
View Article and Find Full Text PDFTamoxifen (Tam) is a selective estrogen receptor (ER) modulator (SERM) that is an essential drug to treat ER-positive breast cancer. Aside from known actions at ERs, recent studies have suggested that some SERMs like Tam also exhibit novel activity at cannabinoid subtype 1 and 2 receptors (CB1R and CB2Rs). Interestingly, cis- (E-Tam) and trans- (Z-Tam) isomers of Tam exhibit over a 100-fold difference in affinity for ERs.
View Article and Find Full Text PDFIncreased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation.
View Article and Find Full Text PDFGraphene and single-walled carbon nanotubes were used to deliver the natural low-toxicity drug gambogic acid (GA) to breast and pancreatic cancer cells in vitro, and the effectiveness of this complex in suppressing cellular integrity was assessed. Cytotoxicity was assessed by measuring lactate dehydrogenase release, mitochondria dehydrogenase activity, mitochondrial membrane depolarization, DNA fragmentation, intracellular lipid content, and membrane permeability/caspase activity. The nanomaterials showed no toxicity at the concentrations used, and the antiproliferative effects of GA were significantly enhanced by nanodelivery.
View Article and Find Full Text PDFDrug Metab Dispos
September 2014
Tamoxifen (Tam) is a selective estrogen receptor modulator used to inhibit breast tumor growth. Tam can be directly N-glucuronidated via the tertiary amine group or O-glucuronidated after cytochrome P450-mediated hydroxylation. In this study, the glucuronidation of Tam and its hydroxylated and/or chlorinated derivatives [4-hydroxytamoxifen (4OHTam), toremifene (Tor), and 4-hydroxytoremifene (4OHTor)] was examined using recombinant human UDP-glucuronosyltransferases (UGTs) from the 1A subfamily and human hepatic microsomes.
View Article and Find Full Text PDFTrans-Resveratrol (tRes) has been shown to have powerful antioxidant, anti-inflammatory, anticarcinogenic, and antiaging properties; however, its use as a therapeutic agent is limited by its rapid metabolism into its conjugated forms by UDP-glucuronosyltransferases (UGTs). The aim of the current study was to test the hypothesis that the limited bioavailability of tRes can be improved by modifying its structure to create analogs which would be glucuronidated at a lower rate than tRes itself. In this work, three synthetic stilbenoids, (E)-3-(3-hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)acrylic acid (NI-12a), (E)-2,4-dimethoxy-6-(4-methoxystyryl)benzaldehyde oxime (NI-ST-05), and (E)-4-(3,5-dimethoxystyryl)-2,6-dinitrophenol (DNR-1), have been designed based on the structure of tRes and synthesized in our laboratory.
View Article and Find Full Text PDF"K2" or "Spice" is an emerging drug of abuse that is laced with psychoactive synthetic cannabinoids JWH-018 and AM2201. Previous studies have identified hydroxylated (OH) and carboxylated (COOH) species as primary human metabolites, and kinetic studies have implicated CYP2C9 and -1A2 as major hepatic P450s involved in JWH-018 and AM2201 oxidation. The present study extends these findings by testing the hypothesis that CYP2C9- and 1A2-selective chemical inhibitors, sulfaphenazole (SFZ) and α-naphthoflavone (ANF), block oxidation of JWH-018 and AM2201 in human liver microsomes (HLM).
View Article and Find Full Text PDFNew designer drugs such as K2, Spice, and "bath salts" present a formidable challenge for law enforcement and public health officials. The following report summarizes a three-year study of 1320 law enforcement cases involving over 3000 products described as vegetable material, powders, capsules, tablets, blotter paper, or drug paraphernalia. All items were seized in Arkansas from January 2010 through December 2012 and submitted to the Arkansas State Crime Laboratory for analysis.
View Article and Find Full Text PDFTamoxifen (Tam) is classified as a selective estrogen receptor modulator (SERM) and is used for treatment of patients with ER-positive breast cancer. However, it has been shown that Tam and its cytochrome P450-generated metabolite 4-hydroxy-Tam (4OH-Tam) also exhibit cytotoxic effects in ER-negative breast cancer cells. These observations suggest that Tam and 4OH-Tam can produce cytotoxicity via estrogen receptor (ER)-independent mechanism(s) of action.
View Article and Find Full Text PDFK2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity.
View Article and Find Full Text PDFDesigner synthetic cannabinoids like JWH-018 and AM2201 have unique clinical toxicity. Cytochrome-P450-mediated metabolism of each leads to the generation of pharmacologically active (ω)- and (ω-1)-monohydroxyl metabolites that retain high affinity for cannabinoid type-1 receptors, exhibit Δ(9)-THC-like effects in rodents, and are conjugated with glucuronic acid prior to excretion in human urine. Previous studies have not measured the contribution of the specific (ω-1)-monohydroxyl enantiomers in human metabolism and toxicity.
View Article and Find Full Text PDFLimited forensic and clinical experience and the lack of confirmatory testing strategies for synthetic cannabinoids (SC) prevent adequate characterization of SC toxicity and the potential impact on public health. A statewide surveillance system identified a fatality involving a 23-year-old man found with a large stab wound to the neck following use of a SC product suspected of containing AM2201. Analytical testing for common SCs, SC metabolites, routine drugs of abuse, and over-the-counter medications was performed on heart blood obtained at autopsy.
View Article and Find Full Text PDFThe acridinone derivates 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone (C-1305) and 5-diethylaminoethylamino-8-hydroxyimidazoacridinone (C-1311) are promising antitumor agents with high activity against several experimental cellular and tumor models and are under evaluation in preclinical and early phase clinical trials. Recent evidence from our laboratories has indicated that both compounds were conjugated by several uridine diphosphate-glucuronyltransferase (UGT) isoforms, the most active being extrahepatic UGT1A10. The present studies were designed to test the ability and selectivity of UGT1A10 in the glucuronidation of acridinone antitumor agents in a cellular context.
View Article and Find Full Text PDFAbuse of synthetic cannabinoids (SCs), such as [1-naphthalenyl-(1-pentyl-1H-indol-3-yl]-methanone (JWH-018) and [1-(5-fluoropentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone (AM2201), is increasing at an alarming rate. Although very little is known about the metabolism and toxicology of these popular designer drugs, mass spectrometric analysis of human urine specimens after JWH-018 and AM2201 exposure identified monohydroxylated and carboxylated derivatives as major metabolites. The present study extends these initial findings by testing the hypothesis that JWH-018 and its fluorinated counterpart AM2201 are subject to cytochrome P450 (P450)-mediated oxidation, forming potent hydroxylated metabolites that retain significant affinity and activity at the cannabinoid 1 (CB(1)) receptor.
View Article and Find Full Text PDF5-Diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311 (NSC-645809), is an antitumor agent shown to be effective against breast cancer in phase II clinical trials. A similar compound, 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone, C-1305, shows high activity against experimental tumors and is expected to have even more beneficial pharmacological properties than C-1311. Previously published studies showed that these compounds are not substrates for cytochrome P450s; however, they do contain functional groups that are common targets for glucuronidation.
View Article and Find Full Text PDFRecently, hydroxylated metabolites of JWH-018, a synthetic cannabinoid found in many K2/Spice preparations, have been shown to retain affinity and activity for cannabinoid type 1 receptors (CB1Rs). The activity of glucuronidated metabolites of JWH-018 is not known; hence, this study investigated the affinity and activity of a major metabolite, JWH-018-N-(5-hydroxypentyl) β-D-glucuronide (018-gluc), for CB1Rs. The 018-gluc binds CB1Rs (K(i) = 922 nM), has no effect on G-protein activity, but antagonizes JWH-018 activity at CB1Rs.
View Article and Find Full Text PDFK2 and several similar purported "incense products" spiked with synthetic cannabinoids are abused as cannabis substitutes. We hypothesized that metabolism of JWH-073, a prevalent cannabinoid found in K2, contributes to toxicity associated with K2 use. Competition receptor binding studies and G-protein activation assays, both performed by employing mouse brain homogenates, were used to determine the affinity and intrinsic activity, respectively, of potential monohydroxylated (M1, M3-M5) and monocarboxylated (M6) metabolites at cannabinoid 1 receptors (CB1Rs).
View Article and Find Full Text PDF