Publications by authors named "Anna R Patten"

The development of synthetic small molecules capable of promoting neuronal fate in stem cells is a promising strategy to prevent the decline of hippocampal function caused by several neurological disorders. Within this context, isoxazole 9 (Isx-9) has been shown to strongly induce cell proliferation and neuronal differentiation in the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG), while also improving hippocampal function in healthy mice. We have recently demonstrated that Isx-9 is able to restore normal neurogenesis levels after procedural stress.

View Article and Find Full Text PDF

Background: The consumption of alcohol during pregnancy can result in abnormal fetal development and impaired brain function in humans and experimental animal models. Depending on the pattern of consumption, the dose, and the period of exposure to ethanol (EtOH), a variety of structural and functional brain deficits can be observed.

Methods: This study compared the effects of EtOH exposure during distinct periods of brain development on oxidative damage and endogenous antioxidant status in various brain regions of adult female and male Sprague Dawley rats.

View Article and Find Full Text PDF

Adult hippocampal neurogenesis can be modulated by various physiological and pathological conditions, including stress, affective disorders, and several neurological conditions. Given the proposed role of this form of structural plasticity in the functioning of the hippocampus (namely learning and memory and affective behaviors), it is believed that alterations in hippocampal neurogenesis might underlie some of the behavioral deficits associated with these psychiatric and neurological conditions. Thus, the search for compounds that can reverse these deficits with minimal side effects has become a recognized priority.

View Article and Find Full Text PDF

The hippocampus plays an integral role in certain aspects of cognition. Hippocampal structural plasticity and in particular adult hippocampal neurogenesis can be influenced by several intrinsic and extrinsic factors. Here we review how hormones (i.

View Article and Find Full Text PDF

The consumption of alcohol during gestation is detrimental to the developing central nervous system (CNS). The severity of structural and functional brain alterations associated with alcohol intake depends on many factors including the timing and duration of alcohol consumption. The hippocampal formation, a brain region implicated in learning and memory, is highly susceptible to the effects of developmental alcohol exposure.

View Article and Find Full Text PDF

Guanosine is a purine nucleoside that occurs naturally in the central nervous system, exerting trophic effects. Given its neuroprotective properties, the potential of guanosine as an antidepressant has been recently examined. Within this context, the present study sought to investigate the effects of chronic treatment with guanosine on the tail suspension test (TST), open field test and adult hippocampal neurogenesis.

View Article and Find Full Text PDF

Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats.

View Article and Find Full Text PDF

In this review, the benefits of physical exercise on structural and functional plasticity in the hippocampus are discussed. The evidence is clear that voluntary exercise in rats and mice can lead to increases in hippocampal neurogenesis and enhanced synaptic plasticity which ultimately result in improved performance in hippocampal-dependent tasks. Furthermore, in models of neurological disorders, including fetal alcohol spectrum disorders, traumatic brain injury, stroke, and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease exercise can also elicit beneficial effects on hippocampal function.

View Article and Find Full Text PDF

Prenatal ethanol exposure (PNEE) has been linked to widespread impairments in brain structure and function. There are a number of animal models that are used to study the structural and functional deficits caused by PNEE, including, but not limited to invertebrates, fish, rodents, and non-human primates. Animal models enable a researcher to control important variables such as the route of ethanol administration, as well as the timing, frequency and amount of ethanol exposure.

View Article and Find Full Text PDF

Exercise can have many benefits for the body, but it also benefits the brain by increasing neurogenesis, synaptic plasticity, and performance on learning and memory tasks. The period of exercise needed to realize the structural and functional benefits for the brain have not been well delineated, and previous studies have used periods of exercise exposure that range from as little as 3 d to up to 6 mo. In this study, we systematically evaluated the effects of differential running periods (3, 7, 14, 28, and 56 d) on both structural (cell proliferation and maturation) and functional (in vivo LTP) changes in the dentate gyrus of adult male Sprague-Dawley rats.

View Article and Find Full Text PDF

Previous studies from our laboratory have shown that prenatal ethanol exposure (PNEE) causes a significant deficit in synaptic plasticity, namely long-term potentiation (LTP), in the dentate gyrus (DG) region of the hippocampus of male rats. PNEE has also been shown to induce an increase in oxidative stress and a reduction in antioxidant capacity in the brains of both male and female animals. In this study the interaction between LTP and the major antioxidant in the brain, glutathione (GSH), is examined.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders result in long-lasting neurological deficits including decreases in synaptic plasticity and deficits in learning and memory. In this study we examined the effects of prenatal ethanol exposure on hippocampal synaptic plasticity in male and female Sprague-Dawley rats. Furthermore, we looked at the capacity for postnatal dietary intervention to rescue deficits in synaptic plasticity.

View Article and Find Full Text PDF

Fetal alcohol spectrum disorders occur when a mother drinks during pregnancy and can greatly influence synaptic plasticity and cognition in the offspring. In this study we determined whether there are periods during brain development that are more susceptible to the effects of ethanol exposure on hippocampal synaptic plasticity. In particular, we evaluated how the ability to elicit long-term potentiation (LTP) in the hippocampal dentate gyrus (DG) was affected in young adult rats that were exposed to ethanol during either the 1st, 2nd, or 3rd trimester equivalent.

View Article and Find Full Text PDF

Prenatal ethanol exposure (PNEE) causes long-lasting deficits in brain structure and function. In this study, we have examined the effect of PNEE on antioxidant capacity and oxidative stress in the adult brain with particular focus on four brain regions known to be affected by ethanol: cerebellum, prefrontal cortex and hippocampus (cornu ammonis and dentate gyrus subregions). We have utilized a liquid diet model of fetal alcohol spectrum disorders that is supplied to pregnant Sprague-Dawley rats throughout gestation.

View Article and Find Full Text PDF

Some toxins and drugs can trigger lasting neuroprotective mechanisms that enable neurons to resist a subsequent severe insult. This "pharmacological preconditioning" has far-reaching implications for conditions in which blood flow to the brain is interrupted. We have previously shown that in vitro preconditioning with the AMPA receptor antagonist GYKI 52466 induces tolerance to kainic acid (KA) toxicity in hippocampus.

View Article and Find Full Text PDF