Publications by authors named "Anna Pope"

The purpose of this review is to analyze research possibilities and limitations of several methods, technical tools and their combinations for elucidation of absence epilepsy mechanisms, particularly the childhood absences. Despite the notable collection of simultaneous recording of clinical electroencephalography (EEG) and behavioral changes in relation to absence seizures, shortcomings of scalp EEG in both spatial resolution and precise detection of subcortical centers have limited the understanding of the fundamental mechanisms of altered brain function during and after recurrent epileptic paroxysms. Therefore, in the past decade, EEG recordings have often been combined with simultaneous imaging methods in epilepsy studies.

View Article and Find Full Text PDF

Success in a dynamically changing world requires both rapid shifts of attention to the location of important objects and the detection of changes in motivational contingencies that may alter future behavior. Here we addressed the relationship between these two processes by measuring the blood-oxygenation-level-dependent (BOLD) signal during a visual search task in which the location and the color of a salient cue respectively indicated where a rewarded target would appear and the monetary gain (large or small) associated with its detection. While cues that either shifted or maintained attention were presented every 4 to 8 sec, the reward magnitude indicated by the cue changed roughly every 30 sec, allowing us to distinguish a change in expected reward magnitude from a maintained state of expected reward magnitude.

View Article and Find Full Text PDF

Background: Recent studies have shown that focal injuries can have remote effects on network function that affect behavior, but these network-wide repercussions are poorly understood.

Objective: This study tested the hypothesis that lesions specifically to the outflow tract of a distributed network can result in upstream dysfunction in structurally intact portions of the network. In the somatomotor system, this upstream dysfunction hypothesis predicted that lesions of the corticospinal tract might be associated with functional disruption within the system.

View Article and Find Full Text PDF