FGF15 and its human orthologue, FGF19, are members of the endocrine FGF family and are secreted by ileal enterocytes in response to bile acids. FGF15/19 mainly targets the liver, but recent studies indicate that it also regulates skeletal muscle mass and adipose tissue plasticity. The aim of this study was to determine the role(s) of the enterokine FGF15/19 during the development of cardiac hypertrophy.
View Article and Find Full Text PDFMeteorin-like/Meteorin-β (Metrnl/Metrnβ) is a secreted protein produced by skeletal muscle and adipose tissue that exerts metabolic actions that improve glucose metabolism. The role of Metrnβ in cardiac disease is completely unknown. Here, we show that Metrnβ-null mice exhibit asymmetrical cardiac hypertrophy, fibrosis, and enhanced signs of cardiac dysfunction in response to isoproterenol-induced cardiac hypertrophy and aging.
View Article and Find Full Text PDFAlcoholic cardiomyopathy (ACM) resulting from chronic alcohol misuse is one of the main contributors leading to heart failure and cardiovascular mortality. Fibroblast growth factor 21 (FGF21) is a well-established cardioprotective factor. We aimed to study the role of FGF21 in experimentally induced models and clinical affected patients with cardiac damage due to chronic alcohol consumption.
View Article and Find Full Text PDFBackground: Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD).
Methods: Studies were conducted in wild-type (WT) and Sirt3 mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells.
FGF21 is an endocrine factor that contributes to multiple pathophysiological processes, mainly via its action as a metabolic regulator and cardioprotective agent. Recent studies have shown increased circulating FGF21 levels in hypertensive patients and in mouse models of hypertension. However, the relevance of FGF21 in hypertensive heart disease has not been addressed.
View Article and Find Full Text PDFAims: Fibroblast growth factor-21 (Fgf21) is an endocrine factor that contributes to many physiological and pathological processes, mainly via its action as a metabolic regulator. Recent studies have shown that Fgf21 plays an important role in cardiac tissue. Pregnancy offers a physiological model of adaptive and reversible heart enlargement, but the molecular mechanisms underlying this cardiac hypertrophy are poorly understood.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
October 2017
Almost 30 years ago, the protein, atrial natriuretic peptide, was identified as a heart-secreted hormone that provides a peripheral signal from the myocardium that communicates to the rest of the organism to modify blood pressure and volume under conditions of heart failure. Since then, additional peripheral factors secreted by the heart, termed cardiokines, have been identified and shown to coordinate this interorgan cross talk. In addition to this interorgan communication, cardiokines also act in an autocrine/paracrine manner to play a role in intercellular communication within the myocardium.
View Article and Find Full Text PDFThe thermogenic activity of brown adipose tissue (BAT) and browning of white adipose tissue are important components of energy expenditure. Here we show that GPR120, a receptor for polyunsaturated fatty acids, promotes brown fat activation. Using RNA-seq to analyse mouse BAT transcriptome, we find that the gene encoding GPR120 is induced by thermogenic activation.
View Article and Find Full Text PDFAngiopoietin-like protein 8 (ANGPTL8), a protein implicated in lipid and glucose homeostasis, is present only in mammals, suggesting that it is involved in processes unique to these vertebrates such as pregnancy and homeothermy. We explored the role of ANGPTL8 in maternal-fetal crosstalk and its relationship with newborn adiposity. In a longitudinal analysis of healthy pregnant women, ANGPTL8 levels decreased progressively during pregnancy although remained higher than levels in the postpartum period.
View Article and Find Full Text PDFThe heart is not traditionally considered either a target or a site of fibroblast growth factor-21 (FGF21) production. However, recent findings indicate that FGF21 can act as a cardiomyokine; that is, it is produced by cardiac cells at significant levels and acts in an autocrine manner on the heart itself. The heart is sensitive to the effects of FGF21, both systemic and locally generated, owing to the expression in cardiomyocytes of β-Klotho, the key co-receptor known to confer specific responsiveness to FGF21 action.
View Article and Find Full Text PDFHigh-fat diet leads to development of cardiac dysfunction through molecular mechanisms poorly known. The aim of this study is to elucidate the early events in cardiac dysfunction caused by a high-fat diet, before massive alterations due to obesity and indirect mechanisms of heart damage take place. Moreover, we analyzed the role of Sirt1, a major mediator of cardiac gene regulation, in these effects.
View Article and Find Full Text PDFAims: Oxidative stress mediated by reactive oxygen species (ROS) plays a striking role in the pathogenesis of heart failure, and antioxidants have been shown to attenuate cardiac remodelling in experimental models of cardiac damage. We recently showed that fibroblast growth factor 21 (Fgf21) is produced by the heart and exerts protective effects, preventing cardiac hypertrophy development. The aim of the study was to determine the effects of Fgf21 during oxidative stress signalling in the heart.
View Article and Find Full Text PDFLong-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) in the diet protect against insulin resistance and obesity. Fibroblast growth factor-21 (Fgf21) is a hormonal factor released mainly by the liver that has powerful anti-diabetic effects. Here, we tested whether the beneficial metabolic effects of LC n-3 PUFA involve the induction of Fgf21.
View Article and Find Full Text PDFAdenine nucleotide translocase (ANT) isoforms are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in the cytosol. The aim of this study was to determine the role of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor-γ [PPAR-γ] coactivator 1α), a master regulator of mitochondrial oxidative metabolism, in the regulation of the expression of ANT isoform genes and to identify the transcription factors involved. We found that PGC-1α overexpression induced the expression of all ANT human and mouse isoforms but to different degrees.
View Article and Find Full Text PDFPeroxisome proliferator activated receptor-gamma co-activator-1alpha (PGC-1alpha) is a transcriptional co-activator that coordinately regulates the expression of distinct sets of metabolism-related genes in different tissues. Here we show that PGC-1alpha expression is reduced in skeletal muscles from mice lacking the sirtuin family deacetylase SIRT1. Conversely, SIRT1 activation or overexpression in differentiated C2C12 myotubes increased PGC-1alpha mRNA expression.
View Article and Find Full Text PDFAccumulating evidence indicates an important role for inflammation in cardiac hypertrophy and failure. Peroxisome proliferator-activated receptors (PPARs) have been reported to attenuate inflammatory signaling pathways and, as such, may interfere with cardiac remodeling. Accordingly, the objectives of the present study were to explore the relationship between cardiomyocyte hypertrophy and inflammation and to investigate whether PPARalpha and PPARdelta are able to inhibit NF-kappaB activation and, consequently, the hypertrophic growth response of neonatal rat cardiomyocytes (NCM).
View Article and Find Full Text PDFIn this study we examined the effect of the statin atorvastatin on the Akt/GSK-3beta pathway. Our findings indicate that atorvastatin treatment for 15 days inhibited pressure overload-induced cardiac hypertrophy and prevented nuclear translocation of GATA4 and c-Jun and AP-1 DNA-binding activity. In addition, atorvastatin treatment prevented the increase in the phosphorylation of Akt and GSK-3beta caused by cardiac hypertrophy, and this effect correlated with an increase in protein levels of phosphatase and tensin homolog on chromosome 10 (PTEN), which negatively regulates the phosphoinositide-3 kinase/Akt pathway.
View Article and Find Full Text PDFCardiac hypertrophy is a response of the heart to a wide range of extrinsic stimuli, such as arterial hypertension, valvular heart disease, myocardial infarction, and cardiomyopathy. Although this process is initially compensatory for an increase workload, its prolongation frequently results in congestive heart failure, arrhythmia, and sudden death. Cardiac hypertrophy is associated with an increase in glucose utilization and a decrease in fatty acid oxidation.
View Article and Find Full Text PDFThe nuclear factor (NF)-kappaB signaling pathway is an important intracellular mediator of cardiac hypertrophy. The aim of the present study was to determine whether triflusal (2-acetoxy-4-trifluoromethylbenzoic acid), a salicylate derivative used as antiplatelet agent, and its active metabolite 2-hydroxy-4-trifluoromethylbenzoic acid (HTB) inhibit cardiac hypertrophy in vitro and in vivo by blocking the NF-kappaB signaling pathway. In cultured neonatal rat cardiomyocytes, HTB (300 microM, a concentration reached in clinical use) inhibited phenylephrine (PE)-induced protein synthesis ([3H]leucine uptake), induction of the fetal-type gene atrial natriuretic factor (ANF), and sarcomeric disorganization.
View Article and Find Full Text PDFThe mechanisms responsible for increased expression of TNF-alpha in skeletal muscle cells in diabetic states are not well understood. We examined the effects of the saturated acid palmitate on TNF-alpha expression. Exposure of C2C12 skeletal muscle cells to 0.
View Article and Find Full Text PDFAlthough abnormalities in cardiac fatty acid metabolism are involved in the development of several cardiac pathologies, the mechanisms underlying these changes are not well understood. Given the prominent role played by peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta in cardiac fatty acid metabolism, the aim of this study was to examine the effects of nuclear factor (NF)-kappaB activation on the activity of this nuclear receptor. Embryonic rat heart-derived H9c2 cells stimulated with lipopolysaccharide (LPS) showed a reduction (38%, P<0.
View Article and Find Full Text PDFThe mechanisms by which elevated levels of free fatty acids cause insulin resistance are not well understood. In addition, accumulating evidence suggests a link between inflammation and type 2 diabetes. Here, we report that exposure of C2C12 skeletal muscle cells to 0.
View Article and Find Full Text PDFAlthough it is generally believed that thiazolidinediones ameliorate insulin resistance by lowering circulating free fatty acids, direct effects of these drugs in skeletal muscle may also contribute to their antidiabetic action. We report that troglitazone administration to mice for 1 day increased the protein expression of Akt (two-fold induction, P<0.001) in skeletal muscle without significant changes in the levels of free fatty acids in plasma.
View Article and Find Full Text PDF