Single-cell microcultures (SCMs) form a monosynaptic circuit that allows stimulation and recording of postsynaptic responses using a single electrode. Here, we present a protocol to establish autaptic cultures from rat superior cervical ganglion neurons. We describe the steps for preparing SCMs, recording synaptic currents, and identifying and processing the recorded neurons for electron microscopy.
View Article and Find Full Text PDFIn the last two decades, microglia have emerged as key contributors to disease progression in many neurological disorders, not only by exerting their classical immunological functions but also as extremely dynamic cells with the ability to modulate synaptic and neural activity. This dynamic behavior, together with their heterogeneous roles and response to diverse perturbations in the brain parenchyma has raised the idea that microglia activation is more diverse than anticipated and that understanding the molecular mechanisms underlying microglial states is essential to unravel their role in health and disease from development to aging. The Ikzf1 (a.
View Article and Find Full Text PDFSynaptic elements from neuromuscular junctions (NMJs) undergo massive morphological and functional changes upon nerve injury. While morphological changes of NMJ-associated glia in response to injury has been investigated, their functional properties remain elusive. Perisynaptic Schwann cells (PSCs), glial cells at the NMJ, are essential for NMJ maintenance and repair, and are involved in synaptic efficacy and plasticity.
View Article and Find Full Text PDFNat Rev Neurosci
November 2014
The formation of highly efficient and reliable synapses at the neuromuscular junction (NMJ) relies on dynamic molecular interactions. Studies of the development and maturation of the NMJ have focused on events that are dependent on synaptic activity and that require the coordinated actions of nerve- and muscle-derived molecules with different targets and effects. More recently, perisynaptic Schwann cells--the glial cells at NMJs--have become an important focus of research.
View Article and Find Full Text PDFSecreted Protein Acidic and Rich in Cysteine (SPARC) is a matricellular protein produced by glial cells. Although it is highly expressed in synaptogenic areas in the developing nervous system, it is still unclear whether this molecule displays an action on synaptic activity. We show that nanomolar concentrations of SPARC favour a more efficient synapse formation and increase short term depression in single cell cholinergic microcultures.
View Article and Find Full Text PDFNicotinic synapses in the autonomous nervous system display use-dependent plasticity but the contribution of cellular environment, as well as the presynaptic mechanisms implicated in this process remain to be determined. To address these questions synaptic function was assayed in rat superior cervical ganglion (SCG) neurons microcultured in isolation from any other cell type and compared to those microcultured in the presence of Schwann cells of ganglionar origin. Schwann cells were not required for synapse formation in vitro because functional cholinergic autaptic synapses were established in both experimental conditions.
View Article and Find Full Text PDFThe transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) regulates the expression of key genes in inflammation but little is known about the involvement of C/EBPbeta in glial activation. In this report, we have studied the patterns of astroglial and microglial C/EBPbeta expression in primary mouse cortical cultures. We show that both astrocytes and microglia express C/EBPbeta in untreated mixed glial cultures.
View Article and Find Full Text PDF