Am J Physiol Cell Physiol
September 2021
The size and shape of skeletal muscle fibers are affected by various physiological and pathological conditions, such as muscle atrophy, hypertrophy, regeneration, and dystrophies. Hence, muscle fiber cross-sectional area (CSA) is an important determinant of muscle health and plasticity. We adapted the Imaris software to automatically segment muscle fibers based on fluorescent labeling of the plasma membrane and measure muscle fiber CSA.
View Article and Find Full Text PDFSignaling through the insulin receptor governs central physiological functions related to cell growth and metabolism. Here we show by tandem native protein complex purification approach and super-resolution STED microscopy that insulin receptor activity requires association with the fundamental structural module in muscle, the dystrophin glycoprotein complex (DGC), and the desmosomal component plakoglobin (γ-catenin). The integrity of this high-molecular-mass assembly renders skeletal muscle susceptibility to insulin, because DGC-insulin receptor dissociation by plakoglobin downregulation reduces insulin signaling and causes atrophy.
View Article and Find Full Text PDFPI3K-Akt-FoxO-mTOR signaling is the central pathway controlling growth and metabolism in all cells. Ubiquitination of the protein kinase Akt prior to its phosphorylation is required for PI3K-Akt activity. Here, we found that the deubiquitinating (DUB) enzyme USP1 removes K63-linked polyubiquitin chains on Akt to restrict PI3K-Akt-FoxO signaling in mouse muscle during prolonged starvation.
View Article and Find Full Text PDFThe Arf GTPase-activating protein ArfGAP1 and its brain-specific isoform ArfGAP1B play an important role in neurotransmission. Here we analyzed the distribution of ArfGAP1 in the mouse brain. We found high levels of ArfGAP1 in the mouse dentate gyrus where it displayed especially elevated level in the polymorph layer (hilus).
View Article and Find Full Text PDFSystems that allow the control of protein traffic between subcellular compartments have been valuable in elucidating trafficking mechanisms. Most current approaches rely on ligand or light-controlled dimerization, which results in either retardation or enhancement of the transport of a reporter. We developed an alternative approach for trafficking regulation that we term "controlled unmasking of targeting elements" (CUTE).
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2015
The heptameric COPI coat (coatomer) plays an essential role in vesicular transport in the early secretory system of eukaryotic cells. While the structures of some of the subunits have been determined, that of the δ-COP subunit has not been reported to date. The δ-COP subunit is part of a subcomplex with structural similarity to tetrameric clathrin adaptors (APs), where δ-COP is the structural homologue of the AP μ subunit.
View Article and Find Full Text PDFCOPI vesicles serve for transport of proteins and membrane lipids in the early secretory pathway. Their coat protein (coatomer) is a heptameric complex that is recruited to the Golgi by the small GTPase Arf1. Although recruited en bloc, coatomer can be viewed as a stable assembly of an adaptin-like tetrameric subcomplex (CM4) and a trimeric 'cage' subcomplex (CM3).
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2010
The Arf1 GTPase-activating protein ArfGAP1 regulates vesicular traffic through the COPI system. This protein consists of N-terminal catalytic domain, lipid packing sensors (the ALPS motifs) in the central region, and a carboxy part of unknown function. The carboxy part contains several diaromatic sequences that are reminiscent of motifs known to interact with clathrin adaptors.
View Article and Find Full Text PDFFrom yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat.
View Article and Find Full Text PDFThe interaction of the Arf1-directed GTPase-activating protein ArfGAP1 with the Golgi apparatus depends on motifs in its noncatalytic part that are unstructured in solution but are capable of folding into amphipathic helices in vitro upon interaction with poorly packed lipids. In previous studies a few hydrophobic residues that are critical for lipid binding and Golgi localization were identified, but the precise topology of the amphipathic motifs has not been determined. Here we present a detailed analysis of the Golgi targeting and in vitro folding features of the region encompassing the amphipathic motifs (residues 199-294).
View Article and Find Full Text PDFCONSTANS-Like (COL) proteins are plant-specific nuclear regulators of gene expression but do not contain a known DNA-binding motif. We tested whether a common DNA-binding protein can deliver these proteins to specific cis-acting elements. We screened for proteins that interact with two members of a subgroup of COL proteins.
View Article and Find Full Text PDFThe Arf1-directed GTPase-activating protein ArfGAP1 is a Golgi-localized protein that controls the dynamics of the COPI coat of carriers that mediate transport in the endoplasmic reticulum-Golgi shuttle. Previously the interaction of ArfGAP1 with the Golgi was allocated to a portion of the non-catalytic, carboxyl part of the protein, but the mechanism of this interaction has not been established. In this study we identify a short stretch in the non-catalytic part of ArfGAP1 (residues 204-214) in which several hydrophobic residues contribute to Golgi localization.
View Article and Find Full Text PDF