We show that the segmental mobility of thin films of poly(4-chlorostyrene) prepared under nonequilibrium conditions gets enhanced in the proximity of rough substrates. This trend is in contrast to existing treatments of roughness which conclude it is a source of slower dynamics, and to measurements of thin films of poly(2-vinylpiridine), whose dynamics is roughness invariant. Our experimental evidence indicates the faster interfacial dynamics originate from a reduction in interfacial density, due to the noncomplete filling of substrate asperities.
View Article and Find Full Text PDFPhys Rev Lett
September 2017
We demonstrate that the enhanced segmental motion commonly observed in spin cast thin polymer films is a nonequilibrium phenomenon. In the presence of nonrepulsive interfaces, prolonged annealing in the liquid state allows, in fact, recovering bulk segmental mobility. Our measurements prove that, while the fraction of unrelaxed chains increases upon nanoconfinement, the dynamics of equilibration is almost unaffected by the film thickness.
View Article and Find Full Text PDFThe glass transition of partially crystallized gelatin-water mixtures was investigated using broadband dielectric spectroscopy (BDS) over a wide range of frequencies (10 mHz to 10 MHz), temperatures (113-298 K), and concentrations (10-45 wt %). Three dielectric relaxation processes (processes I, II, and III) were clearly observed. Processes I, II, and III originate from uncrystallized water (UCW) in the hydration shells of gelatin, ice, and hydrated gelatin, respectively.
View Article and Find Full Text PDF