We present an approach for the rational development of stimuli-responsive ionogels which can be formulated for precise control of multiple unique ionogel features and fill niche pharmaceutical applications. Ionogels are captivating materials, exhibiting self-healing characteristics, tunable mechanical and structural properties, high thermal stability, and electroconductivity. However, the majority of ionogels developed require complex chemistry, exhibit high viscosity, poor biocompatibility, and low biodegradability.
View Article and Find Full Text PDFThermoresponsive polymers with the appropriate structure form physical networks upon changes in temperature, and they find utility in formulation science, tissue engineering, and drug delivery. Here, we report a cost-effective biocompatible alternative, namely OEGMA300--BuMA--DEGMA, which forms gels at low concentrations (as low as 2% w/w); OEGMA300, BuMA, and DEGMA stand for oligo(ethylene glycol) methyl ether methacrylate (MM = 300 g mol), -butyl methacrylate, and di(ethylene glycol) methyl ether methacrylate, respectively. This polymer is investigated in depth and is compared to its commercially available counterpart, Poloxamer P407 (Pluronic F127).
View Article and Find Full Text PDFOur group has recently invented a novel series of thermoresponsive ABC triblock terpolymers based on oligo(ethylene glycol) methyl ether methacrylate with average 300 g mol (OEGMA300, A unit), -butyl methacrylate (BuMA, B unit) and di(ethylene glycol) methyl ether methacrylate (DEGMA, C unit) with excellent thermogelling properties. In this study, we investigate how the addition of OEGMA300 homopolymers of varying molar mass (MM) affects the gelation characteristics of the best performing ABC triblock terpolymer. Interestingly, the gelation is not disrupted by the addition of the homopolymers, with the gelation temperature () remaining stable at around 30 °C, depending on the MM and content in OEGMA300 homopolymer.
View Article and Find Full Text PDFIn this study, seven thermoresponsive methacrylate terpolymers with the same molar mass (MM) and composition but various architectures were successfully synthesized using group transfer polymerization (GTP). These terpolymers were based on tri(ethylene glycol) methyl ether methacrylate (TEGMA, A unit), -butyl methacrylate (BuMA, B unit), and 2-(dimethylamino)ethyl methacrylate (DMAEMA, C unit). Along with the more common ABC, ACB, BAC, and statistical architectures, three diblock terpolymers were also synthesized and investigated for the first time, namely (AB)C, A(BC), and B(AC); where the units in the brackets are randomly copolymerized.
View Article and Find Full Text PDF