Publications by authors named "Anna O Avrova"

The oomycete is a damaging crop pathogen and a model organism to study plant-pathogen interactions. We report the discovery of a family of copper-dependent lytic polysaccharide monooxygenases (LPMOs) in plant pathogenic oomycetes and its role in plant infection by We show that LPMO-encoding genes are up-regulated early during infection and that the secreted enzymes oxidatively cleave the backbone of pectin, a charged polysaccharide in the plant cell wall. The crystal structure of the most abundant of these LPMOs sheds light on its ability to recognize and degrade pectin, and silencing the encoding gene in inhibits infection of potato, indicating a role in host penetration.

View Article and Find Full Text PDF

Background: The oomycete Phytophthora infestans possesses active RNA silencing pathways, which presumably enable this plant pathogen to control the large numbers of transposable elements present in its 240 Mb genome. Small RNAs (sRNAs), central molecules in RNA silencing, are known to also play key roles in this organism, notably in regulation of critical effector genes needed for infection of its potato host.

Results: To identify additional classes of sRNAs in oomycetes, we mapped deep sequencing reads to transfer RNAs (tRNAs) thereby revealing the presence of 19-40 nt tRNA-derived RNA fragments (tRFs).

View Article and Find Full Text PDF

Advances in genome sequencing technologies have enabled generation of unprecedented information on genome content and organization. Eukaryote genomes in particular may contain large populations of transposable elements (TEs) and other repeated sequences. Active TEs can result in insertional mutations, altered transcription levels and ectopic recombination of DNA.

View Article and Find Full Text PDF

Phytophthora infestans is the oomycete pathogen responsible for the devastating late blight disease on potato and tomato. There is presently an intense research focus on the role(s) of effectors in promoting late blight disease development. However, little is known about how they are regulated, or how diversity in their expression may be generated among different isolates.

View Article and Find Full Text PDF

Phytophthora infestans is the notorious oomycete causing late blight of potato and tomato. A large proportion of the P. infestans genome is composed of transposable elements, the activity of which may be controlled by RNA silencing.

View Article and Find Full Text PDF

Gene silencing may have a direct or indirect impact on many biological processes in eukaryotic cells, and is a useful tool for the determination of the roles of specific genes. In this article, we report silencing in Phytophthora infestans, an oomycete pathogen of potato and tomato. Gene silencing is known to occur in P.

View Article and Find Full Text PDF

• A detailed molecular understanding of how oomycete plant pathogens evade disease resistance is essential to inform the deployment of durable resistance (R) genes. • Map-based cloning, transient expression in planta, pathogen transformation and DNA sequence variation across diverse isolates were used to identify and characterize PiAVR2 from potato late blight pathogen Phytophthora infestans. • PiAVR2 is an RXLR-EER effector that is up-regulated during infection, accumulates at the site of haustoria formation, and is recognized inside host cells by potato protein R2.

View Article and Find Full Text PDF

Proteins embedded in the cell wall and plasma membrane of filamentous oomycetes and fungi provide a means by which these organisms can interact with their local environment. However, cell wall and membrane proteins have often proved difficult to isolate using conventional proteomic techniques. Here we have used liquid chromatography tandem mass spectrometry (LC-MS/MS) to facilitate rapid and sensitive quantification of the cell wall proteome.

View Article and Find Full Text PDF

Oomycete plant pathogens cause a wide variety of economically and environmentally important plant diseases. Mandipropamid (MPD) is a carboxylic acid amide (CAA) effective against downy mildews, such as Plasmopara viticola on grapes and potato late blight caused by Phytophthora infestans. Historically, the identification of the mode of action of oomycete-specific control agents has been problematic.

View Article and Find Full Text PDF

The oomycete potato late blight pathogen, Phytophthora infestans, and the apicomplexan malaria parasite Plasmodium falciparum translocate effector proteins inside host cells, presumably to the benefit of the pathogen or parasite. Many oomycete candidate secreted effector proteins possess a peptide domain with the core conserved motif, RxLR, located near the N-terminal secretion signal peptide. In the Ph.

View Article and Find Full Text PDF

Phytophthora infestans causes late-blight, a devastating and re-emerging disease of potato crops. During the early stages of infection, P. infestans differentiates infection-specific structures such as appressoria for host epidermal cell penetration, followed by infection vesicles, and haustoria to establish a biotrophic phase of interaction.

View Article and Find Full Text PDF

The asexual multinucleated sporangia of Phytophthora infestans can germinate directly through a germ tube or indirectly by releasing zoospores. The molecular mechanisms controlling sporangial cytokinesis or sporangial cleavage, and zoospore release are largely unknown. Sporangial cleavage is initiated by a cold shock that eventually compartmentalizes single nuclei within each zoospore.

View Article and Find Full Text PDF

Cellulose, the important structural compound of cell walls, provides strength and rigidity to cells of numerous organisms. Here, we functionally characterize four cellulose synthase genes (CesA) in the oomycete plant pathogen Phytophthora infestans, the causal agent of potato (Solanum tuberosum) late blight. Three members of this new protein family contain Pleckstrin homology domains and form a distinct phylogenetic group most closely related to the cellulose synthases of cyanobacteria.

View Article and Find Full Text PDF

Much of the pathogenic success of Phytophthora infestans, the potato and tomato late blight agent, relies on its ability to generate from mycelia large amounts of sporangia, which release zoospores that encyst and form infection structures. To better understand these stages, Affymetrix GeneChips based on 15,650 unigenes were designed and used to profile the life cycle. Approximately half of P.

View Article and Find Full Text PDF

Bacterial, oomycete and fungal plant pathogens establish disease by translocation of effector proteins into host cells, where they may directly manipulate host innate immunity. In bacteria, translocation is through the type III secretion system, but analogous processes for effector delivery are uncharacterized in fungi and oomycetes. Here we report functional analyses of two motifs, RXLR and EER, present in translocated oomycete effectors.

View Article and Find Full Text PDF

Phytophthora infestans is the cause of late blight, a devastating and re-emerging disease of potato. Significant advances have been made in understanding the biology of P. infestans, and in the development of molecular tools to study this oomycete.

View Article and Find Full Text PDF

The oomycete Phytophthora infestans causes late blight, the potato disease that precipitated the Irish famines in 1846 and 1847. It represents a reemerging threat to potato production and is one of >70 species that are arguably the most devastating pathogens of dicotyledonous plants. Nevertheless, little is known about the molecular bases of pathogenicity in these algae-like organisms or of avirulence molecules that are perceived by host defenses.

View Article and Find Full Text PDF

The first known families of tRNA-related short interspersed elements (SINEs) in the oomycetes were identified by exploiting the genomic DNA sequence resources for the potato late blight pathogen, Phytophthora infestans. Fifteen families of tRNA-related SINEs, as well as predicted tRNAs, and other possible RNA polymerase III-transcribed sequences were identified. The size of individual elements ranges from 101 to 392 bp, representing sequences present from low (1) to highly abundant (over 2000) copy number in the P.

View Article and Find Full Text PDF

SUMMARY Gene silencing, triggered by double-stranded RNA (dsRNA), has proved to be a valuable tool for determining and confirming the function of genes in many organisms. For Phytophthora infestans, the cause of late blight on potato and tomato, gene silencing strategies have relied on stable transformation followed by spontaneous silencing of both the endogenous gene and the transgene. Here we describe the first application of transient gene silencing in P.

View Article and Find Full Text PDF

Appressorium formation is believed to be an important event in establishing a successful interaction between the late blight pathogen, Phytophthora infestans, and its host plants potato and tomato. An understanding of molecular events occurring in appressorium development could suggest new strategies for controlling late blight. We used parallel studies of the transcriptome and proteome to identify genes and proteins that are up-regulated in germinating cysts developing appressoria.

View Article and Find Full Text PDF

Phytophthora infestans, the organism responsible for the Irish famine, causes late blight, a re-emerging disease of potato and tomato. Little is known about the molecular evolution of P. infestans genes.

View Article and Find Full Text PDF

Soft rot Erwinia spp., like other closely related plant pathogens, possess a type III secretion system (TTSS) (encoded by the hrp gene cluster) implicated in disease development. We report the sequence of the entire hrp gene cluster and adjacent dsp genes in Erwinia carotovora subsp.

View Article and Find Full Text PDF

SUMMARY Suppression subtractive hybridization was used to isolate the genes which are specifically up-regulated in the biotrophic phase of the incompatible interaction between a potato genotype, 1512 c(16), containing the resistance gene R2, and a Phytophthora infestans isolate containing the avirulence gene Avr2. Eight cDNAs were up-regulated in the biotrophic phase of the incompatible interaction. Seven of these were also up-regulated in the compatible interaction, but not until late in the necrotrophic phase.

View Article and Find Full Text PDF

Phytophthora infestans, the causal agent of potato and tomato late blight, produces several different cell types prior to and during the early stages of potato infection. All of these cell types can be easily generated and studied in the absence of the host plant and so form the basis for developmental stage-specific gene discovery. We have used amplified fragment length polymorphism (AFLP)-based mRNA fingerprinting (cDNA-AFLP) to identify 64 transcripts that appeared to be up-regulated in germinating cysts but not in vegetative mycelium.

View Article and Find Full Text PDF

Genome sequencing is making a profound impact on microbiology. Currently, however, only one plant pathogen genome sequence is publicly available and no genome-sequencing project has been initiated for any species of the genus Erwinia, which includes several important plant pathogens. This paper describes a targeted sample sequencing approach to study the genome of Erwinia carotovora subsp.

View Article and Find Full Text PDF