Precise length, shape, and linker attachment points are all integral components to designing efficacious proteolysis targeting chimeras (PROTACs). Due to the synthetic complexity of these heterobifunctional degraders and the difficulty of computational modeling to aid PROTAC design, the exploration of structure-activity relationships remains mostly empirical, which requires a significant investment of time and resources. To facilitate rapid hit finding, we developed capabilities for PROTAC parallel synthesis and purification by harnessing an array of preformed E3-ligand-linker intermediates.
View Article and Find Full Text PDFHistone deacetylase 6 (HDAC6) is a unique member of the HDAC family mainly targeting cytosolic nonhistone substrates, such as α-tubulin, cortactin, and heat shock protein 90 to regulate cell proliferation, metastasis, invasion, and mitosis in tumors. We describe the identification and characterization of a series of 2-(difluoromethyl)-1,3,4-oxadiazoles (DFMOs) as selective nonhydroxamic acid HDAC6 inhibitors. By comparing structure-activity relationships and performing quantum mechanical calculations of the HDAC6 catalytic mechanism, we show that potent oxadiazoles are electrophilic substrates of HDAC6 and propose a mechanism for the bioactivation.
View Article and Find Full Text PDFEvaluation and optimization of physicochemical and metabolic properties of compounds are a crucial component of the drug development process. Continuous access to this information during the design-make-test-analysis cycle enables identification of chemical entities with suitable properties for efficient project progression. In this study, we describe an integrated and automated assay panel (DMPK Wave 1) that informs weekly on lipophilicity, solubility, human plasma protein binding, and metabolic stability in rat hepatocytes and human liver microsomes.
View Article and Find Full Text PDFObjective: We previously showed that activation of GABA(B) receptors by intravenous baclofen reduces pseudo-affective responses to colorectal distension in rats. Here we evaluate the potential clinical significance of these observations.
Material And Methods: Clinically relevant colorectal distension protocols were used to assess the effects of oral baclofen on visceromotor and autonomic cardiovascular responses in conscious rats.
We compared the neurokinin 1 receptor (NK(1)R) antagonists aprepitant, CP-99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], and ZD6021 [3-cyano-N-((2S)-2-(3,4-dichlorophenyl)-4-[4-[2-(methyl-(S)-sulfinyl)phenyl]piperidino]butyl)-N-methyl]napthamide]] with respect to receptor interactions and duration of efficacy in vivo. In Ca(2+) mobilization assays (fluorometric imaging plate reader), antagonists were applied to human U373MG cells simultaneously with or 2.5 min before substance P (SP).
View Article and Find Full Text PDF