Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.
View Article and Find Full Text PDFMolecular interaction maps (MIMs) are static graphical representations depicting complex biochemical networks that can be formalized using one of the Systems Biology Graphical Notation languages. Regardless of their extensive coverage of various biological processes, they are limited in terms of dynamic insights. However, MIMs can serve as templates for developing dynamic computational models.
View Article and Find Full Text PDFMacrophages play an essential role in rheumatoid arthritis. Depending on their phenotype (M1 or M2), they can play a role in the initiation or resolution of inflammation. The M1/M2 ratio in rheumatoid arthritis is higher than in healthy controls.
View Article and Find Full Text PDFComput Struct Biotechnol J
August 2023
Cancer-associated fibroblasts (CAFs) are amongst the key players of the tumor microenvironment (TME) and are involved in cancer initiation, progression, and resistance to therapy. They exhibit aggressive phenotypes affecting extracellular matrix remodeling, angiogenesis, immune system modulation, tumor growth, and proliferation. CAFs phenotypic changes appear to be associated with metabolic alterations, notably a reverse Warburg effect that may drive fibroblasts transformation.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a complex autoimmune disease with an unknown aetiology. However, rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) play a significant role in initiating and perpetuating destructive joint inflammation by expressing immuno-modulating cytokines, adhesion molecules, and matrix remodelling enzymes. In addition, RA-FLS are primary drivers of inflammation, displaying high proliferative rates and an apoptosis-resistant phenotype.
View Article and Find Full Text PDFAs a conceptual model of disease mechanisms, a disease map integrates available knowledge and is applied for data interpretation, predictions and hypothesis generation. It is possible to model disease mechanisms on different levels of granularity and adjust the approach to the goals of a particular project. This rich environment together with requirements for high-quality network reconstruction makes it challenging for new curators and groups to be quickly introduced to the development methods.
View Article and Find Full Text PDFRheumatoid Arthritis (RA) is an autoimmune disease characterized by a highly invasive pannus formation consisting mainly of Synovial Fibroblasts (RASFs). This pannus leads to cartilage, bone, and soft tissue destruction in the affected joint. RASFs' activation is associated with metabolic alterations resulting from dysregulation of extracellular signals' transduction and gene regulation.
View Article and Find Full Text PDFComput Struct Biotechnol J
June 2022
Molecular mechanisms of health and disease are often represented as systems biology diagrams, and the coverage of such representation constantly increases. These static diagrams can be transformed into dynamic models, allowing for simulations and predictions. Boolean modelling is an approach based on an abstract representation of the system.
View Article and Find Full Text PDFNucleic acid sensing is a 3 decades old but still challenging area of application for different biological sub-domains, from pathogen detection to single cell transcriptomics analysis. The many applications of nucleic acid detection and identification are mostly carried out by PCR techniques, sequencing, and their derivatives used at large scale. However, these methods' limitations on speed, cost, complexity and specificity have motivated the development of innovative detection methods among which nucleic acid biosensing technologies seem promising.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a multifactorial, complex autoimmune disease that involves various genetic, environmental, and epigenetic factors. Systems biology approaches provide the means to study complex diseases by integrating different layers of biological information. Combining multiple data types can help compensate for missing or conflicting information and limit the possibility of false positives.
View Article and Find Full Text PDFComputational models of biological systems can exploit a broad range of rapidly developing approaches, including novel experimental approaches, bioinformatics data analysis, emerging modelling paradigms, data standards and algorithms. A discussion about the most recent advances among experts from various domains is crucial to foster data-driven computational modelling and its growing use in assessing and predicting the behaviour of biological systems. Intending to encourage the development of tools, approaches and predictive models, and to deepen our understanding of biological systems, the Community of Special Interest (COSI) was launched in Computational Modelling of Biological Systems (SysMod) in 2016.
View Article and Find Full Text PDFCausal molecular interactions represent key building blocks used in computational modeling, where they facilitate the assembly of regulatory networks. Logical regulatory networks can be used to predict biological and cellular behaviors by system perturbations and in silico simulations. Today, broad sets of causal interactions are available in a variety of biological knowledge resources.
View Article and Find Full Text PDFFibroblasts, the most abundant cells in the connective tissue, are key modulators of the extracellular matrix (ECM) composition. These spindle-shaped cells are capable of synthesizing various extracellular matrix proteins and collagen. They also provide the structural framework (stroma) for tissues and play a pivotal role in the wound healing process.
View Article and Find Full Text PDFMechanistic computational models enable the study of regulatory mechanisms implicated in various biological processes. These models provide a means to analyze the dynamics of the systems they describe, and to study and interrogate their properties, and provide insights about the emerging behavior of the system in the presence of single or combined perturbations. Aimed at those who are new to computational modeling, we present here a practical hands-on protocol breaking down the process of mechanistic modeling of biological systems in a succession of precise steps.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a systemic autoimmune disease that affects the synovial joints of the body. Rheumatoid arthritis fibroblast-like synoviocytes (RA FLS) are central players in the disease pathogenesis, as they are involved in the secretion of cytokines and proteolytic enzymes, exhibit invasive traits, high rate of self-proliferation and an apoptosis-resistant phenotype. We aim at characterizing transcription factors (TFs) that are master regulators in RA FLS and could potentially explain phenotypic traits.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFMotivation: Molecular interaction maps have emerged as a meaningful way of representing biological mechanisms in a comprehensive and systematic manner. However, their static nature provides limited insights to the emerging behaviour of the described biological system under different conditions. Computational modelling provides the means to study dynamic properties through in silico simulations and perturbations.
View Article and Find Full Text PDFResearchers around the world join forces to reconstruct the molecular processes of the virus-host interactions aiming to combat the cause of the ongoing pandemic.
View Article and Find Full Text PDFThe fast accumulation of biological data calls for their integration, analysis and exploitation through more systematic approaches. The generation of novel, relevant hypotheses from this enormous quantity of data remains challenging. Logical models have long been used to answer a variety of questions regarding the dynamical behaviours of regulatory networks.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a progressive, inflammatory autoimmune disease of unknown aetiology. The complex mechanism of aetiopathogenesis, progress and chronicity of the disease involves genetic, epigenetic and environmental factors. To understand the molecular mechanisms underlying disease phenotypes, one has to place implicated factors in their functional context.
View Article and Find Full Text PDF: Aseptic loosening is a major problem in total joint replacement. Implant wear debris provokes a foreign body host response and activates cells to produce a variety of mediators and ROS, leading to periprosthetic osteolysis. Elevated ROS levels can harm proteasome function.
View Article and Find Full Text PDF