As a master regulator of the dynamic process of adult neurogenesis, timely expression and regulation of the orphan nuclear receptor Tailless (Tlx) is essential. However, there is no study yet to directly investigate the essential role of precise spatiotemporal expressed Tlx. Here, we generated a conditional gain of Tlx expression transgenic mouse model, which allowed the extended Tlx expression in neural stem cells (NSCs) and their progeny by mating with a TlxCreER mouse line.
View Article and Find Full Text PDFBrain tumor stem cells (BTSCs) are a chemoresistant population that can drive tumor growth and relapse, but the lack of BTSC-specific markers prevents selective targeting that spares resident stem cells. Through a ribosome-profiling analysis of mouse neural stem cells (NSCs) and BTSCs, we find glycerol-3-phosphate dehydrogenase 1 (GPD1) expression specifically in BTSCs and not in NSCs. GPD1 expression is present in the dormant BTSC population, which is enriched at tumor borders and drives tumor relapse after chemotherapy.
View Article and Find Full Text PDFMutations in chromatin modifier genes are frequently associated with neurodevelopmental diseases. We herein demonstrate that the chromodomain helicase DNA-binding protein 7 (Chd7), frequently associated with CHARGE syndrome, is indispensable for normal cerebellar development. Genetic inactivation of Chd7 in cerebellar granule neuron progenitors leads to cerebellar hypoplasia in mice, due to the impairment of granule neuron differentiation, induction of apoptosis and abnormal localization of Purkinje cells, which closely recapitulates known clinical features in the cerebella of CHARGE patients.
View Article and Find Full Text PDF