Stud Health Technol Inform
June 2020
Intracranial hemorrhage is a pathological condition that requires fast diagnosis and decision making. Recently, a neural network model for classification of different intracranial hemorrhage types was proposed by a member of our research group Konstantin Kotik as part of the machine learning competition at Kaggle. Our current pilot study aimed to test this model on real-world CT scans from patients with intracranial hemorrhage treated at N.
View Article and Find Full Text PDF