C-glucosidic ellagitannins constitute a subclass of bioactive polyphenolic natural products with strong antioxidant properties, as well as promising antitumoral and antiviral activities that are related to their capacity to interact with both functional and structural proteins. To date, most synthetic efforts toward ellagitannins have concerned glucopyranosic species. The development of a synthetic strategy to access C-glucosidic ellagitannins, whose characteristic structural feature includes an atropoisomeric hexahydroxydiphenoyl (HHDP) or a nonahydroxyterphenoyl (NHTP) unit that is linked to an open-chain glucose core by a C-aryl glucosidic bond, is described herein.
View Article and Find Full Text PDFThe first total synthesis of a member of the C-glucosidic subclass of ellagitannins, 5-O-desgalloylepipunicacortein A, was accomplished by relying on a biomimetic aldol-type formation of its characteristic C-aryl glucosidic bond through the exploitation of the inherent chemical reactivity of a glucopyranosic hemiacetal precursor.
View Article and Find Full Text PDFIn this study, we have designed novel chromanyl derivatives that share with alpha-tocopherol a chromanyl head but differ in the lateral chain in: (i) length and saturation (FEBL-45, 50, 70), (ii) position of double bonds in Z or E (FEBL-50 and 53 and their respective 6-chromanyl methyl derivatives FEBL-161 and 162), or (iii) presence of additional antioxidant molecules, such as the catechol compound hydroxytyrosol (FEBL-80) or dopamine (FEBL-82, 95). The efficiency of these compounds in preventing free-radical-induced oxidative stress was investigated in isolated membranes as well as intact cells. The results of this study clearly show that all compounds synthesized were active in: (i) inhibiting AAPH- or tert-BOOH-induced lipid peroxidation in microsomes and (ii) preventing H2O2-induced ROS production, cell damage, and heat-shock protein expression in immortalized RAT-1 fibroblasts.
View Article and Find Full Text PDFChemical or enzymatic oxidation of 5,6-dihydroxyindole (1) leads to the rapid deposition of a black solid resembling eumelanin pigments by way of a complex oligomerization/polymerization process that proceeds in the early stages via dimers 2-3 and trimers 5-6 characterized by 2,4'- and 2,7'-couplings. Despite extensive efforts, the structures of the higher oligomers, which define the structural architecture and physicochemical properties of the eumelanin particles, have so far defied elucidation. Using a dimer-dimer coupling strategy that has recently allowed the first successful entry to a tetramer of 1, we report now three additional tetramers obtained by oxidation of 5,5',6,6'-tetrahydroxy-2,7'-biindolyl (3) with the peroxidase/H2O2 system.
View Article and Find Full Text PDFThe chemical and spectroscopic characterization of 5,6-indolequinones and their semiquinones, key transient intermediates in the oxidative conversion of 5,6-dihydroxyindoles to eumelanin biopolymers, is a most challenging task. In the present paper, we report the characterization of a novel, relatively long-lived 5,6-indolequinone along with its semiquinone using an integrated chemical, pulse radiolytic, and computational approach. The quinone was obtained by oxidation of 5,6-dihydroxy-3-iodoindole (1a) with o-chloranil in cold ethyl acetate or aqueous buffer: it displayed electronic absorption bands around 400 and 600 nm, was reduced to 1a with Na2S2O4, and reacted with o-phenylenediamine to give small amounts of 3-iodo-1H-pyrrolo[2,3-b]phenazine (2).
View Article and Find Full Text PDF