Obtaining a comprehensive grasp of the behavior and interaction of pharmaceutical compounds within single cells provides some of the fundamental details necessary for more effective drug development. In particular, the changes ensuing in the carrier, drug, and host environment in targeted drug therapy applications must be explored in greater detail, as these are still not well understood. Here, nilotinib-functionalized gold nanoparticles are examined within single mammalian cells with use of imaging cluster secondary ion mass spectrometry in a model study designed to enhance our understanding of what occurs to these particles once that have been internalized.
View Article and Find Full Text PDFTo achieve successful drug delivery via nanoparticles the interactions between the nanoparticle and the chemistry of the surrounding biological environment is of central importance. A thorough understanding of these interactions is necessary in order to better elucidate information regarding drug pathways and mechanisms of action in treatment protocols. As such, it is important to identify the location of the nanoparticle, the state of its functionalization, as well as any changes in the cellular environment.
View Article and Find Full Text PDF