The Southern California endemic mite Paratarsotomus macropalpis was filmed in the field on a concrete substrate and in the lab to analyze stride frequency, gait and running speed under different temperature conditions and during turning. At ground temperatures ranging from 45 to 60 °C, mites ran at a mean relative speed of 192.4 ± 2.
View Article and Find Full Text PDFNeuromechanics seeks to understand how muscles, sense organs, motor pattern generators, and brain interact to produce coordinated movement, not only in complex terrain but also when confronted with unexpected perturbations. Applications of neuromechanics include ameliorating human health problems (including prosthesis design and restoration of movement following brain or spinal cord injury), as well as the design, actuation and control of mobile robots. In animals, coordinated movement emerges from the interplay among descending output from the central nervous system, sensory input from body and environment, muscle dynamics, and the emergent dynamics of the whole animal.
View Article and Find Full Text PDF