Publications by authors named "Anna Morawska-Chochol"

Silicone rubbers based on poly(dimethylsiloxane) (PDMS) are crosslinked elastomers commonly used in various branches of industry, especially as packing materials in elements for high-temperature service. In addition to high temperatures, mechanical loading may influence their structure during their work, and, as a consequence, their thermal properties may change. This study's findings on the degradation mechanism under aging conditions are not just necessary, but also crucial for their satisfactory application.

View Article and Find Full Text PDF

Scaffolds for the filling and regeneration of osteochondral defects are a current challenge in the biomaterials field, and solutions with greater functionality are still being sought. The novel approach of this work was to obtain scaffolds with biologically active additives possessing microstructural, permeability, and mechanical properties, mimicking the complexity of natural cartilage. Four types of scaffolds with a gelatin/alginate matrix modified with hydroxyapatite were obtained, and the relationship between the modifiers and substrate properties was evaluated.

View Article and Find Full Text PDF

Low-diameter blood vessels are challenging to replace with more traditional synthetic vascular grafts. Therefore, the obvious choice is to try to regenerate small veins and arteries through tissue-engineering approaches. However, the layered structure of native vessels and blood compatibility issues make this a very challenging task.

View Article and Find Full Text PDF

Background: Commonly, intramedullary nails are made of nondegradable materials, and hence they need to be removed once the bone fracture is healed. We propose a novel composite material consisting of poly-L-lactide matrix modified with carbon and alginate fibers to be used for biodegradable intramedullary fixation. The aim of this study was to make in vitro and in vivo biocompatibility assessments.

View Article and Find Full Text PDF

Recent approaches in tissue regeneration focus on combining innovative achievements of stem cell biology and biomaterial sciences to develop novel therapeutic strategies for patients. Growing recent evidence indicates that mesenchymal stem cells harvested from human umbilical cord Wharton's jelly (hUC-MSCs) are a new valuable source of cells for autologous as well as allogeneic therapies in humans. hUC-MSCs are multipotent, highly proliferating cells with prominent immunoregulatory activity.

View Article and Find Full Text PDF

When it comes to the treatment of long bone fractures, scientists are still investigating new materials for intramedullary nails and different manufacturing methods. Some of the most promising materials used in the field are resorbable polymers and their composites, especially since there is a wide range of potential manufacturing and processing methods. The aim of this work was to select the best manufacturing method and technological parameters to obtain multiphase, and multifunctional, biodegradable intramedullary nails.

View Article and Find Full Text PDF

One of the major problems in orthopedic surgery is infection associated with implantation. The treatment is a very difficult and long-term process. A solution to this issue can be the use of implants which additionally constitute an antibiotic carrier preventing the development of an infection.

View Article and Find Full Text PDF

Composites with the gradient of Young's modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites.

View Article and Find Full Text PDF

A promising group of biomaterials assigned for the production of intramedullary nails are composites with a polylactide (PLA) matrix, reinforced with wires made of magnesium alloys and carbon fibres. The paper describes the effect of the composition of magnesium alloy wires, their number and orientation in the composite, as well as their connection with differently directed long carbon fibres, on the mechanical properties and the degradation rate of the obtained intramedullary nails. Among the tested implant prototypes, the best mechanical characteristics and a gradual and uniform course of magnesium alloy wires were exhibited by the PLA+CF1D+MgI composite nails (with a unidirectional orientation of carbon fibres and an axially oriented single Mg alloy wire).

View Article and Find Full Text PDF

Synthetic polymers belonging to the aliphatic polyester group have become highly promising biomaterials for reconstructive medicine. The purpose of the present work is a biological evaluation of lactide-glycolide co-polymer (PLGA) and its composites with carbon fibers (PLGA+CF) or hydroxyapatite (PLGA+HA). The cytotoxicity of the evaluated materials towards hFOB 1.

View Article and Find Full Text PDF

In this study the influence of short carbon fibres (CF) on mechanical properties and degradation time of the lactide-glycolide co-polymer (PGLA) and on the mechanism of bone ingrowth into the implants was determined. Mechanical properties and push-out tests were measured. The pH of solutions and the implants' weights were tested after incubation in Ringer fluid.

View Article and Find Full Text PDF