Entropy (Basel)
August 2021
The biomedical field is characterized by an ever-increasing production of sequential data, which often come in the form of biosignals capturing the time-evolution of physiological processes, such as blood pressure and brain activity. This has motivated a large body of research dealing with the development of machine learning techniques for the predictive analysis of such biosignals. Unfortunately, in high-stakes decision making, such as clinical diagnosis, the opacity of machine learning models becomes a crucial aspect to be addressed in order to increase the trust and adoption of AI technology.
View Article and Find Full Text PDFThe rapid dynamics of COVID-19 calls for quick and effective tracking of virus transmission chains and early detection of outbreaks, especially in the "phase 2" of the pandemic, when lockdown and other restriction measures are progressively withdrawn, in order to avoid or minimize contagion resurgence. For this purpose, contact-tracing apps are being proposed for large scale adoption by many countries. A centralized approach, where data sensed by the app are all sent to a nation-wide server, raises concerns about citizens' privacy and needlessly strong digital surveillance, thus alerting us to the need to minimize personal data collection and avoiding location tracking.
View Article and Find Full Text PDFBackground: Gastroesophageal reflux disease (GERD) is one of the most common gastrointestinal disorders worldwide, with relevant impact on the quality of life and health care costs.The aim of our study is to assess the prevalence of GERD based on self-reported symptoms among university students in central Italy. The secondary aim is to evaluate lifestyle correlates, particularly eating habits, in GERD students using automatically recorded transactions through cashiers at university canteen.
View Article and Find Full Text PDF