Background: Aberrant WNT/β-catenin signaling drives carcinogenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize AXINs, β-catenin repressors. Tankyrase inhibitors block WNT/β-catenin signaling and colorectal cancer (CRC) growth.
View Article and Find Full Text PDFTankyrases (TNKS/TNKS2) belong to the poly(ADP-ribose) polymerase family. Inhibition of their enzymatic activities attenuates the Wnt/β-catenin signaling, which plays an important role in cancer pathogenesis. We previously reported the discovery of RK-287107, a spiroindoline-based, highly selective, potent tankyrase inhibitor.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2020
Tankyrases (TNKS and TNKS2) are members of poly(ADP-ribose) polymerase (PARP) family proteins. Tankyrase has multiple ankyrin repeat cluster (ARC) domains, which recognize the tankyrase-binding motifs in proteins including the telomeric protein, TRF1 and Wnt signal regulators, AXINs. However, the functional significance of tankyrase interaction with many other putative binding proteins remains unknown.
View Article and Find Full Text PDFThe canonical WNT pathway plays an important role in cancer pathogenesis. Inhibition of poly(ADP-ribose) polymerase catalytic activity of the tankyrases (TNKS/TNKS2) has been reported to reduce the Wnt/β-catenin signal by preventing poly ADP-ribosylation-dependent degradation of AXIN, a negative regulator of Wnt/β-catenin signaling. With the goal of investigating the effects of tankyrase and Wnt pathway inhibition on tumor growth, we set out to find small-molecule inhibitors of TNKS/TNKS2 with suitable drug-like properties.
View Article and Find Full Text PDFLung cancer is one of the major causes of cancer death and clarification of its molecular pathology is highly prioritized. The physiological importance of mRNA degradation through the CCR4-NOT deadenylase has recently been highlighted. For example, mutation in CNOT3, a gene coding for CNOT3 subunit of the CCR4-NOT complex, is found to be associated with T-cell acute lymphoblastic leukemia, T-ALL, though its contribution to other cancers has not been reported.
View Article and Find Full Text PDFAberrant activation of Wnt/β-catenin signaling causes tumorigenesis and promotes the proliferation of colorectal cancer cells. Porcupine inhibitors, which block secretion of Wnt ligands, may have only limited clinical impact for the treatment of colorectal cancer, because most colorectal cancer is caused by loss-of-function mutations of the tumor suppressor adenomatous polyposis coli (APC) downstream of Wnt ligands. Tankyrase poly(ADP-ribosyl)ates (PARylates) Axin, a negative regulator of β-catenin.
View Article and Find Full Text PDFZinc finger E-box binding protein 1 (ZEB1) and ZEB2 induce epithelial-mesenchymal transition (EMT) and enhance cancer progression. However, the global view of transcriptional regulation by ZEB1 and ZEB2 is yet to be elucidated. Here, we identified a ZEB1-regulated inflammatory phenotype in breast cancer cells using chromatin immunoprecipitation sequencing and RNA sequencing, followed by gene set enrichment analysis (GSEA) of ZEB1-bound genes.
View Article and Find Full Text PDFActivation of Wnt/β-catenin signaling is essential for colorectal carcinogenesis. Tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, is a positive regulator of the Wnt/β-catenin signaling. Accordingly, tankyrase inhibitors are under preclinical development for colorectal cancer (CRC) therapy.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is induced by transforming growth factor (TGF)-β and facilitates tumor progression. We here performed global mapping of accessible chromatin in the mouse mammary gland epithelial EpH4 cell line and its Ras-transformed derivative (EpRas) using formaldehyde-assisted isolation of regulatory element (FAIRE)-sequencing. TGF-β and Ras altered chromatin accessibility either cooperatively or independently, and AP1, ETS, and RUNX binding motifs were enriched in the accessible chromatin regions of EpH4 and EpRas cells.
View Article and Find Full Text PDFIn most colorectal cancers, Wnt/β-catenin signaling is activated by loss-of-function mutations in the () gene and plays a critical role in tumorigenesis. Tankyrases poly(ADP-ribosyl)ate and destabilize Axins, a negative regulator of β-catenin, and upregulate β-catenin signaling. Tankyrase inhibitors downregulate β-catenin and are expected to be promising therapeutics for colorectal cancer.
View Article and Find Full Text PDFThe p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling exerts paradoxical roles in pluripotent stem cells (PSCs); it sustains self-renewal of mouse embryonic stem cells (ESCs), while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs) in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs.
View Article and Find Full Text PDFOverexpression of the ErbB2/HER2 receptor tyrosine kinase contributes to tumorigenesis. However, mechanisms regulating ErbB2 protein levels remain largely unclear. Here, we identified novel mechanisms of ErbB2 downregulation.
View Article and Find Full Text PDFSpecific regulation of target genes by transforming growth factor-β (TGF-β) in a given cellular context is determined in part by transcription factors and cofactors that interact with the Smad complex. In this study, we determined Smad2 and Smad3 (Smad2/3) binding regions in the promoters of known genes in HepG2 hepatoblastoma cells, and we compared them with those in HaCaT epidermal keratinocytes to elucidate the mechanisms of cell type- and context-dependent regulation of transcription induced by TGF-β. Our results show that 81% of the Smad2/3 binding regions in HepG2 cells were not shared with those found in HaCaT cells.
View Article and Find Full Text PDFArkadia is a positive regulator of transforming growth factor (TGF)-β signalling that induces ubiquitin-dependent degradation of several inhibitory proteins of TGF-β signalling through its C-terminal RING domain. We report here that, through yeast-two-hybrid screening for Arkadia-binding proteins, the µ2 subunit of clathrin-adaptor 2 (AP2) complex was identified as an interacting partner of Arkadia. Arkadia was located in both the nucleus and the cytosol in mammalian cells.
View Article and Find Full Text PDF