Publications by authors named "Anna Meneghello"

The anticancer drug imatinib is often involved in therapeutic drug monitoring (TDM) studies aimed at improving the treatment of several forms of leukemia and gastrointestinal stromal tumors (GIST). To further implement the TDM of imatinib in clinical practice, we developed a detection assay by using an ssDNA aptamer, which demonstrated excellent selectivity and was not affected by interference from the components of human plasma samples. The efficient binding of imatinib to the aptamer was demonstrated by means of surface plasmon resonance (SPR) analysis, which allowed the development of a quantitative assay in the concentration range between 400 and 6000 ng mL (0.

View Article and Find Full Text PDF

Circulating HER2 extracellular domain (HER2 ECD) levels were proposed as a surrogate for HER2 tissue expression to monitor breast cancer patients for early relapse or responses to standard or HER2-targeted therapies, such as the monoclonal antibody (mAb) trastuzumab. Currently, available commercial ELISA assays for HER2 ECD rely on antibodies recognizing undisclosed or unknown epitopes. In this work, two ELISA assays employing MGR2 and MGR3 epitope-specific mAbs for HER2 ECD were developed and validated, showing good assay precision and linearity of the dose-response signal within the dynamic range of 0.

View Article and Find Full Text PDF

The implementation of therapeutic drug monitoring in the routine clinical practice in oncology is mainly limited by the lack of therapeutic indexes for the majority of the anticancer drugs, and by the absence of suitable analytical tools, which can accurately quantify in real time the concentration of the administered drugs and their relevant metabolites in biological fluids. In this work, a simple and efficient fluorimetric determination of SN-38, the active metabolite of the anticancer drug irinotecan, was developed and applied to human plasma samples. The intrinsic fluorescence of SN-38 allowed its quantification in the range 10-500 ng mL with a LOQ of 5.

View Article and Find Full Text PDF

Therapeutic drug monitoring (TDM) is the clinical practice of measuring pharmaceutical drug concentrations in patients' biofluids at designated intervals, thus allowing a close and timely control of their dosage. To date, TDM in oncology can only be performed by trained personnel in centralized laboratories and core facilities employing conventional analytical techniques (e.g.

View Article and Find Full Text PDF

Background And Rationale: Therapeutic drug monitoring (TDM) is the clinical practice of measuring pharmaceutical drug concentrations in patients' biofluids at designated intervals to allow a close and timely control of their dosage. This practice allows for rapid medical intervention in case of toxicity-related issues and/or adjustment of dosage to better fit the therapeutic demand. Currently, TDM is performed in centralized laboratories employing instruments, such as immunoassay analyzers and mass spectrometers that can be run only by trained personnel.

View Article and Find Full Text PDF

Plasmonic nanosensors are candidates for the development of new sensors with low detection limits, high sensitivity, and specificity for target detection: these characteristics are of critical importance in the screening of mutations responsible for inherited diseases. In this work, we focused our study on the detection of some of the most frequent mutations responsible for cystic fibrosis (CF) among the Italian population. For the detection of the CF mutations we adopted a recently developed and highly sensitive Grating Coupled-Surface Plasmon Resonance (GC-SPR) enhanced spectroscopy method for label-free molecular identification exploiting a conical illumination configuration.

View Article and Find Full Text PDF

Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate.

View Article and Find Full Text PDF

In this work we have developed a multiplex microarray system capable of detecting VEGF165 and thrombin. We recently described a Sandwich Aptamer Microarray (SAM) for thrombin detection feasible for use in multiplex microarrays; here we describe a new aptasensor for VEGF165 detection employing Vap7 and VEa5, two DNA aptamers recognizing different sites of the protein. The aptamers were modified to be adapted to the solid phase platform of SAM and their capability to simultaneously recognize VEGF165 by forming a ternary complex was analyzed in solution.

View Article and Find Full Text PDF

A sandwich microarray employing two distinct aptamers for human thrombin has been optimized for the detection of subnanomolar concentrations of the protein. The aptamer microarray demonstrates high specificity for thrombin, proving that a two-site binding assay with the TBA1 aptamer as capture layer and the TBA2 aptamer as detection layer can ensure great specificity at times and conditions compatible with standard routine analysis of biological samples. Aptamer microarray sensitivity was evaluated directly by fluorescent analysis employing Cy5-labeled TBA2 and indirectly by the use of TBA2-biotin followed by detection with fluorescent streptavidin.

View Article and Find Full Text PDF

We have developed an aptamer-based microarray for human thrombin detection exploiting two non-overlapping DNA thrombin aptamers recognizing different exosites of the target protein. The 15-mer aptamer (TBA1) binds the fibrinogen-binding site, whereas the 29-mer aptamer (TBA2) binds the heparin binding domain. Extensive analysis on the complex formation between human thrombin and modified aptamers was performed by Electrophoresis Mobility Shift Assay (EMSA), in order to verify in solution whether the chemical modifications introduced would affect aptamers/protein recognition.

View Article and Find Full Text PDF

DNA microarray is a powerful tool for the parallel of nucleic acids and other biologically significant molecules. In this communication we report an easy and cheap synthesis route for incorporating organic dyes into monodisperse inorganic silica nanoparticles and their application on the detection of carcinogenic risky Human Papilloma Virus using DNA microarray technology. We correlate our system with conventional direct dyes and commercial quantum dots, with a promising increase in optical signal, and a related decrease of the limit of detection, thus giving a remarkable improvement in this technique towards early diagnosis of diseases and trace level detection of dangerous biological contaminants.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionev6gie2r3npqu8hnpj2sbvo4smg02j7i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once